Meetings > Autonomy Short Course
Location: Levine Hall 307
August 12, 10:00 - 16:00
- Motivation (Mintz)
- Basics (Mintz)
- 2.1 Basic linear algebra
- 2.2 Basic probability theory
- 2.3 Basic dynamic systems
- 2.4 Discrete state equations
Lunch (on your own)
3 Filtering and state estimation - I (Mintz)
- 3.1 The Kalman filter
- 3.2 Exercises with linear systems
4 MATLAB (Kallem/Kushleyev/Mellinger/Lindsey/Gray)
- 4.1 Implementation
- 4.2 Exercise
August 13, 10:00 - 16:00
5 Filtering and state estimation - II
- 5.1 Kinematic model of a mobile robot (Michael)
- 5.2 Extended Kalman filter (Michael)
- 5.3 Unscented Kalman Filter (Michael)
- 5.4 Particle Filter (Michael)
- 5.5 Implementation in MATLAB (Kallem/Kushleyev/Lindsey/Gray)
Working Lunch - Matlab/Player/Gazebo (Fink)
6 Planning
- 6.1 The A* algorithm (Likachev)
- 6.2 The D* algorithm (Likachev)
- 6.3 Planning under uncertainty (Likachev) planningRobotics.pdf
- 6.4 Demos (Kushleyev/Lindsey/Gray)