Rocket Static Stability

MEAM 247b — Fall 2008 Bruce D. Kothmann

Lecture Prepared From These Reports

THE THEORETICAL PREDICTION

OF THE

CENTER OF FRESSURE

Ъy

James S. Barrowman (#6883)

and

Judith A. Barrowman (#7489)

Read This
One for
Knowledge &
Pleasure

Skim
This One for
Equations

Presented as a

RESEARCH AND DEVELOPMENT

Project at

NARAM-8

on

August 18, 1966

This report was reprinted on the Apogee Components web site with permission of James S. Barrowman

www.ApogeeRockets.com

STABILITY OF A MODEL ROCKET IN FLIGHT

BY JIM BARROWMAN

This report has been written to help you understand the scientific principle; that affect the stability of your model nockets. It is not a "how to?" menual on calculating stability. It has been written on the examption that every model nocketeer wants to know "why" as well as "how to?".

The best technique for accurately determining the stability of model rockets is given in CENTURY'S TIR # 30.

CENTURI ENGINEERING COMPANY
F.O. Box 1988
PHOENIX, ARIZONA 85001

Figures in Lecture Taken from this Excellent Report

BDK: 15-Feb-2010

MEAM 247b : Rocket Stability

Basic Concept of *Static* Stability

Static Stability Applied to Rockets

Careful: Static Stability!= Dynamic Stability

Experience Suggests
That Static Stability is
Usually Sufficient for
Dynamic Stability on a
Model Rocket

Microcontroller Uses Feedback of Ball Position to Achieve Static Stability & Dynamic Instability!

"Center of Pressure" Concept

Actual Distributed
Pressure Forces on
Body Surface

Equivalent Point Load with Identical Moment About CG

"Center of Pressure" Concept

Static Stability → CP Aft of CG

Types of stability Figure 31

Achieving Static Stability

Static Margin = Degree of Static Stability

MEAM 247b : Rocket Stability BDK : 15-Feb-2010

10

How Much Static Margin is Too Much?

Effect of Stability on Trajectory & Simulation

MEAM 247b: Rocket Stability BDK: 15-Feb-2010

12

Estimating N and Xcp

- Neglect Small Contribution of Body (Valid for Small Angles Only)
- Compute Point Force and "Center of Pressure" For Nose and Tail Distributed Loads Independently (Assume No Aerodynamic Interactions / Interference)

$$N = \int_{x=0}^{x=L} n(x)dx \approx \int_{NOSE} n(x)dx + 0 + \int_{TAIL} n(x)dx$$

Force Coefficients

$$C_{N} = \frac{N}{\frac{1}{2}\rho V^{2}A} \approx \frac{N_{NOSE} + N_{TAIL}}{\frac{1}{2}\rho V^{2}A} = C_{N_{NOSE}} + C_{N_{TAIL}}$$

For Small Angles of Attack, \alpha, Force Coefficients Are Linearly Related to \alpha

$$C_{N} = C_{N_{\alpha}} \alpha = \left(C_{N_{\alpha, NOSE}} + C_{N_{\alpha, TAIL}} \right) \alpha$$

Simplified "Barrowman Equations" Give Formulas for Derivatives on RHS in Terms of Nose & Fin Geometry

Center of Pressure Calculations

$$x_{CP,NOSE} = \frac{1}{N_{NOSE}} \int_{NOSE} x \times n(x) dx$$

$$x_{CP,TAIL} = \frac{1}{N_{TAIL}} \int_{TAIL} x \times n(x) dx$$

Simplified "Barrowman Equations" Give Formulas for Nose & Tail CP Locations in Terms of Nose and Fin Geometry

$$x_{CP} = \frac{C_{N,NOSE} x_{CP,NOSE} + C_{N,TAIL} x_{CP,TAIL}}{C_{N,NOSE} + C_{N,TAIL}}$$

Do We Have to Calculate Stuff to Get a Stable Rocket?

In the "Real World" of Aerospace Engineering...

- "Build-and-Check" is Much Too Expensive
- Development Cycle Time = Critical for Success
- Carefully Designed Scale Model Tests Often Used
- Computational Models Almost Always Used
- Analytical Insights From Simple Models Essential
- And...

Calculating Stuff is Fun!

Okay, You Don't Actually Have to Calculate Stuff...

SWING TEST

The best experimental method is to swing the fully prepared rocket (parachute and engine inserted) on a string attached to the rocket at its center of gravity. First, balance test the rocket to find its C.G. Then secure the string firmly at the C.G. with a piece of tape or straight pin. Check to see if the area is clear so you won't hit anyone or smash the rocket when you swing it. Be careful to start the rocket so that it is pointing in the direction that it is moving. Remember that if it has a large angleof-attack, it may be unstable at that angle even though it is actually stable at smaller angles-of-attack. If the rocket tends to stay pointed in the direction it is moving as you swing it, then it is stable. Several tries may be necessary before you can start the rocket swinging smoothly; but if the rocket simply will not stay pointed in the direction it is moving, then it probably doesn't have adequate stability.

BDK · 15-Feb-2010

Balanced rocket Figure 15

