MEAM 520 PHANTOM

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Project I : PUMA Light Painting

Homework 5: Input/Output Calculations for a Real Robot

MEAM 520, University of Pennsylvania
 Katherine J. Kuchenbecker, Ph.D.

November 13, 2012
This assignment is due on Tuesday, November 20, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. Late submissions will be accepted until 5:00 p.m. on Wednesday, Noved.
21, but they will be penalized by 25%. After that deadline, no further assignments may be submitted. 21, but they will be penalized by 25%. After that deadine, no further assignments may be submitted.
You may talk with other students about this assignment, ask the teaching team questions, use a calcul and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

SensAble Phantom Premium 1.0 (60 points)

This entire assignment is focused on a particular robot - the SensAble Phantom Premium 1.0. As shown in the photo below left, the Phantom is an impedance-type haptic interface with three actuated rotational joints. Designed to be lightweight, stiff, smooth, and easily backdrivable, this type of haptic interface enables a human user to interact with a virtual environment or control the movement of a remote robot through the movement of their fingertip while simultaneously feeling force feedback.

A thimble is attached to the tip of the robot via a passive non-encoded three-axis gimbal to allow the user to move the robot around while freely rotating their fingertip. As shown in the diagram above right, the Phantom haptic device looks similar to the standard RRR articulated manipulator base, but it uses a unique four-bar mechanism to co-locate the shoulder and elbow joints while also keeping the upper arm and forearm in the plane that intersects the axis of the waist joint.
Each of the four questions below includes both a written explanation and the programming of a specific Matlab function. For the paper parts, write in pencil, show your work clearly, box your answers, and staple your pages together. For the programming, download the starter code from this assignment's page on the class wiki, change all function and file names to include your PennKey, comment your code, and follow the instructions at the end of this document to submit all of your Matlab files.

Solutions to Homework 5
MEAM 520
Introduction to Robotics
University of Pennsylvania
Professor Kuchenbecker
Fall 2012

On reserve in engineering library.

Encoder counts to mútor angles.
Encoders are HEDM SOD BO2: 1000 pilses pur revolution Pulses doo throrgh a Juastratume decoder chip.

$$
\begin{aligned}
& \underset{\text { ratians }}{\Theta_{m i}}=Q_{i} \cdot \frac{l_{\text {polbee }}}{4_{\text {counts }}} \cdot \frac{1 \text { revalution }}{1000 \text { polses }} \cdot \frac{2 \pi \text { radiams }}{1 \text { revolutions }} \\
& \text { where } i=1,2,3 \quad \theta_{m i}=Q_{i} \frac{2 \pi \text { radians }}{4000 \text { coonts }}
\end{aligned}
$$

$\frac{\text { Motor } 1}{0}$
view from top.

$\frac{\text { Motors } 2 \mathrm{sme} 3}{\text { vow }}$
 definitions

$$
\begin{array}{ll}
\theta_{1}=\frac{13}{116} \theta_{m 1} & \text { (basee) } \\
\theta_{2}=\frac{10}{76} \theta_{m_{2}} & \text { (shouldor) } \\
\theta_{3}=\frac{10}{76} \theta_{m 3} & \text { (eltow) }
\end{array}
$$

Now we know the coordinates of this point in the u-z plane. Vievel from above, clue robt arm is in agindrical coordinates,

θ_{1} is base
θ_{2} is shoulder
θ_{3} is alton
all relative to around.
(b)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\cos \theta_{1}\left(l_{2} \cos \theta_{2}-l_{3} \sin \theta_{3}\right) \\
-\sin \theta_{1}\left(l_{2} \cos \theta_{2}-l_{3} \sin \theta_{3}\right) \\
l_{1}-l_{2} \sin \theta_{2}-l_{3} \cos \theta_{3}
\end{array}\right]
$$

Note yon should not

From measurements: be adding θ_{2}
and of s).

$$
l_{1} \cong 168 \mathrm{~mm} \quad l_{2} \cong 140 \mathrm{~mm} \quad l_{3} \cong 140 \mathrm{~mm}
$$

(b) Shown again
(b)

$$
\left.\begin{array}{l}
x_{\text {tip }}=\left(\cos \theta_{1}\right)\left(l_{2} \cos \theta_{2}-l_{3} \sin \theta_{3}\right) \\
y_{\text {tip }}=-\left(\sin \theta_{1}\right)\left(l_{2} \cos \theta_{2}-l_{3} \sin \theta_{3}\right) \\
z_{\text {tip }}=l_{1}-l_{2} \sin \theta_{2}-l_{3} \cos \theta_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{1}\left(l_{2} c c_{1}-l_{3} l_{1}\right. \\
-51\left(l_{2} c_{2}-l_{3}:\right. \\
l_{1}-l_{2} s 2-l_{3} \cdot c_{2}
\end{array}\right.
$$

7) Jacobian Transpose: $\vec{\sim}=J^{T} F$

$$
J_{v}=\left[\begin{array}{ccc}
-s 1\left(l_{2} \cdot c 2-l_{3} \cdot s 3\right) & -l_{2} \cdot c 1 \cdot s 2 & -l_{3} \cdot c 1 \cdot c 3 \\
-c 1\left(l_{2} \cdot 2-l_{3} \cdot s 3\right) & l_{2} \cdot s 1 \cdot s 2 & l_{3} s 1 \cdot c 3 \\
0 & -l_{2} \cdot c 2 & l_{3} \cdot s 3
\end{array}\right]
$$

(c) $\left[\begin{array}{l}\tilde{U}_{1} \\ \tilde{v}_{2} \\ U_{3}\end{array}\right]=J+\left[\begin{array}{l}F_{x} \\ F_{y} \\ F_{z}\end{array}\right]$

$$
\begin{aligned}
& V_{1}=\tau_{1} \cdot \frac{13}{116} \cdot \frac{5 \Omega}{0.0234 \mathrm{Nm} / \mathrm{A}} \\
& V_{2}=\tau_{2} \cdot \frac{10}{76} \cdot \frac{5 \Omega}{0.023+\mathrm{Nm} / \mathrm{A}} \\
& V_{3}=\tau_{3} \cdot \frac{10}{76} \cdot \frac{5 \Omega}{0.0234 \mathrm{Nm} / \mathrm{A}}
\end{aligned}
$$

Questions?

Project 2

Team Formation

You will work in a team of 3
 (33 teams of 3, only one team of 4)

You may not keep the same team as for project I. I strongly encourage you to work with all new people.

If you insist, you can stay with one other person, but beware the negative effects this may have on the dynamics of your subsequent team.

I encourage you to mix undergrad and grad, MEAM and non-MEAM, but this is not required.

Please pick your team ASAP.
We will randomly assign people who do not select a team.

MEAM.Design : MEAM520-12C-P02-Teams

GENERAL
Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANToM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE
SolidWorks
Matlab

MEAM.Design - MEAM 520 - PHANToM Haptics: Team Selection
Project 2 is PHANToM Haptics. The first part of this project is selecting your team. You must pick your team for PHANToM Haptics by midnight on Tuesday, November 27.

Below are the team selection guidelines:

- Each team will include exactly three students.
- You may not keep the same team as for project 1 . We strongly encourage you to work with all new people.
- If you insist, you can stay with one other person, but beware the negative effects this may have on the dynamics of your subsequent team.
- We encourage you to mix undergrad and grad, MEAM and non-MEAM, but this is not required.

Looking for teammates? Try using the Project Teams \& Study Groups tool on Piazza.
When you have chosen your team, please send a list of all three names to Denise Wong (MEAM 520 TA),
We will be happy to assign you to a team if you can't find two partners. Just send an email to Denise to explain the situation. Include your name, email address, and degree program to assist her in matching you with other students. Teams will be assigned on a rolling basis to give you as much time as possible to work together on the project.

If Denise does not hear from you by midnight on Tuesday, she will assign you to a team on Wednesday. The list below shows all confirmed teams. Team numbers for project 2 will start at 51 to avoid confusion with team numbers from project 1 .

Team - Members

51 - Michael Gosselin, Jialue Huang, and Qiong Wang
52 - Pablo Castillo, Wei-Ting Lo, and Chao Qu
53 - Sarah Badin, Dalton Banks, and Kunal Mahajan
54 - Shaojun Zhu, Hao Min, and Tianyi Zhang
55 - Noor Bosch, Nicholas Mcgill, and William Price
56 - Tianyu Dong, Yanwei Du, and Quangeng Xu
57 - Chaoyi Huang, Bo Yuan, and Rui Zhang
58 - Manisha Golas, Alex Jose, and Anand Mahusoohanan
59 - Sawyer Brooks, Dean Wilhelmi, and James Yang
60 - Bofei Wang, Di Wu, and Shiming Zhao
61 - Christine Kappeyne, Niko Vladimirov, and Brett Wittmerhaus
62 - Jon Balloch, Yunkai Cui, and Jason Gui
63 - Anne Mroz, Alex Sher, and Fiona Strain
64 - Noam Eisen, Eza Koch, and Paige Willoughby

000

MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANTOM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE
SolidWorks
Matlab
NX
Nastran
Fluent, Gambit
SolidCAM
Eagle

- You may not keep the same team as for project 1. We strongly encourage you to work with all new people.
- If you insist, you can stay with one other person, but beware the negative effects this may have on the dynamics of your subsequent team.
- We encourage you to mix undergrad and grad, MEAM and non-MEAM, but this is not required.

Looking for teammates? Try using the Project Teams \& Study Groups tool on Plazza.
When you have chosen your team, please send a list of all three names to Denise Wong (MEAM 520 TA).
We will be happy to assign you to a team if you can't find two partners. Just send an email to Denise to explain the situation. Include your name, email address, and degree program to assist her in matching you with other students. Teams will be assigned on a rolling basis to give you as much time as possible to work together on the project.

If Denise does not hear from you by midnight on Tuesday, she will assign you to a team on Wednesday. The list below shows all confirmed teams.
Team numbers for project 2 will start at 51 to avoid confusion with team numbers from project 1 .

Team - Members

51 - Michael Gosselin, Jialue Huang, and Qiong Wang
52 - Pablo Castillo, Wei-Ting Lo, and Chao Qu
53 - Sarah Badin, Dalton Banks, and Kunal Mahajan
54 - Shaojun Zhu, Hao Min, and Tianyi Zhang
55 - Noor Bosch, Nicholas Mcgill, and William Price
56 - Tianyu Dong, Yanwei Du, and Quangeng Xu
57 - Chaoyi Huang, Bo Yuan, and Rui Zhang
58 - Manisha Golas, Alex Jose, and Anand Mahusoohanan
59 - Sawyer Brooks, Dean Wilhelmi, and James Yang
60 - Bofei Wang, Di Wu, and Shiming Zhao
61 - Christine Kappeyne, Niko Vladimirov, and Brett Wittmerhaus
62 - Jon Balloch, Yunkai Cui, and Jason Gui
63 - Anne Mroz, Alex Sher, and Fiona Strain
64 - Noam Eisen, Eza Koch, and Paige Willoughby
65 - Annett Bordoley, Dieter Neckermann, and Rafi Holzer
66 - Jennifer Hui, Hardik Gupta, and Robert Parajon
67 - Erica Aduh, Daniel Friedman, and Cristina Sorice 68 - Leslie Callaghan, Vivian Chu, and Stella Latscha
69 - Sukreeti Sehrawat, Samarch Manoj Brahmbhatt, and Alexandre Miranda Anon
70 -

OTHER
Vendor List

MEAM.Design : Phantom

GENERAL

Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANToM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE
SolidWorks
Matlab

SensAble PHANToM Premium 1.0

Overview

As shown in the photo below, the PHANToM is an impedance-type haptic interface with three actuated rotational joints. Designed to be lightweight, stiff, smooth, and easily backdrivable, this type of haptic interface enables a human user to interact with a virtual environment or control the movement of a remote robot through the movement of their fingertip while simultaneously feeling force feedback. A thimble is attached to the tip of the robot via a passive non-encoded three-axis gimbal to allow the user to move the robot around while freely rotating their fingertip.

Abstract

BeagleBoard MAEVARM Phidget Tap Chart

\section*{SOFTWARE}

SolidWorks Matlab NZ Nastran Fluent, Gambit SolidCAM Eagle

OTHER Vendor List Design Links

Editing Tips edit SideBar SEARCH \square

As shown in the diagram above, the Phantom haptic device looks similar to the standard RRR articulated manipulator base, but it uses a unique four-bar mechanism to co-locate the shoulder and elbow joints while also keeping the upper arm and forearm in the plane that intersects the axis of the waist joint.

\section*{Mechanical Design}

Each of the three arm joints (1, 2, and 3) is driven by a Maxon 118743 DC brushed motor with a shaft-mounted HEDM-5500-B02 optical encoder. Drum and capstan cable drives are used to connect the motors to the respective joints.

The schematic shows Phantom's zero configuration (the configuration where we zero the encoders). Here, the upper arm is horizontal, the lower arm is vertical, and the tip is located above the x-axis. The encoder counts increase when each joint is rotated in the direction indicated on the schematic; these are the positive directions for the joint angles as well.

\section*{Matlab Interface} phantomStart(hardware); Call this at the start of your code to initialize the PHANToM driver. Pass in false for hardware when you are developing your code - the software will simulate the presence of a user by playing a pre-recorded movement trajectory. After you are confident your code will

Mechanical Design

Each of the three arm joints (1,2, and 3) is driven by a Maxon 118743 DC brushed motor with a shaft-mounted HEDM-5500-B02 optical encoder. Drum and capstan cable drives are used to connect the motors to the respective joints.

The schematic shows Phantom's zero configuration (the configuration where we zero the encoders). Here, the upper arm is horizontal, the lower arm is vertical, and the tip is located above the x-axis. The encoder counts increase when each joint is rotated in the direction indicated on the schematic; these are the positive directions for the joint angles as well.

Matlab Interface

phantomStart(hardware); Call this at the start of your code to initialize the PHANToM driver. Pass in false for hardware when you are developing your code - the software will simulate the presence of a user by playing a pre-recorded movement trajectory. After you are confident your code will have the effect you desire and you're working on the computer in B2 Towne, pass in true for hardware to run your code on the actual PHANToM. Read about the emergency stop button as well!

Encoders = phantomEncoders(); Return the instantaneous encoder values, in counts, with respect to the zero position. Encoders is a 3×1 array of the encoder values. If hardware is set to false, this function will return the next set of encoder values from a pre-recorded trajectory.

Angles = phantomJointAngles(); Return the instantaneous joint angles, in radians, with respect to the zero position. Angles is a 3×1 array of the joint angles. If hardware is set to false, this function will return the next set of joint angles from a pre-recorded trajectory.
phantomJointTorques(tau1, tau2, tau3); Command all three joint torques in newton-meters. A positive torque moves the corresponding joint in the positive direction. Be sure to specify all three values each time you call this function. A warning will be triggered if you request more torque than can be delivered via the maximum current; you can turn off this warning by calling warning('off','PHANToM:JointTorque') on the command line. This function has no effect if hardware is set to false.
phantomCurrents(i1, $\mathbf{i 2}, \mathbf{i 3}$); where ($\mathbf{- 1 . 0} \mathbf{\leq i x} \leq \mathbf{1 . 0}$) - Command all three motor currents in amps. A positive current moves the corresponding joint in the positive direction. Be sure to specify all three values each time you call this function. This function has no effect if hardware is set to false.
phantomStop(); End your code with this function. It closes the PHANToM driver and releases memory back to the Linux Kernel.
phantomZero(); Zero the encoders. If the PHANToM is not calibrated, run "phantomZero" in the command window, and follow the on-screen instructions. This command rarely needs to be run, so it should not be in your actual code. This function does not need to be run when hardware is set to false.

Emergency Stop

The amplifiers in the PHANToM are governed by an emergency stop button. You must pull up the emergency stop to enable motor control, and you can see the state of the switch by looking at the center-top LED on the front of the amplifier box located under the table. You should always run your code with the emergency stop down (no forces) before running it with the emergency stop up (with forces).

MEAM.Design : MEAM520-12C-P02-Rendering

GENERAL

Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANToM
BeagleBoard
MAEVARM
Phidget
Tap Chart

MEAM.Design - MEAM 520 - PHANToM Haptics: Rendering

Now that you have your team, it's time to get to work on project 2 . This assignment is due by 5:00 p.m. on Tuesday, December 4. Start by downloading the starter code (v1). We are providing you with p-coded versions of all the functions described in the Phantom Guide. For example, calling phantomStart (false) ; starts the simulated phantom so you can work on your code on any computer. Instead of getting encoder readings from the real PHANToM, the system simulates the presence of a human user by reading a pre-recorded trajectory from the included encsHistory.mat file.

Demo: Haptic Box

Run haptic_box_demo.m and look at how it is written. This demonstration creates a virtual haptic box for the user to feel, as seen in the top illustration at right. The user is trapped inside the virtual box and feels a virtual spring force each time they contact a wall. The position of the PHANToM tip is shown as a red circle, the box is shown in transparent colors, and a scaled version of the force vector is shown as a thick black line.

The system simulates the presence of a human user by default because you probably don't have a PHANToM connected to your
 computer. Look at how the forces Fx, Fy, and Fz are calculated from the positions hx, hy, and hz. This is the type of mapping you will need to create in this assignment.
Once you understand how the haptic box demo works, your team's task on this project is to complete the following two haptic rendering scenes created for the PHANToM.

SOFTWARE
SolidWorks
Matlab

Task 1: Haptic Ball

Complete the haptic ball scene that has been started for you in haptic_ball_team50.m. Change the filename to match

SOFTWARE
SolidWorks
Matlab
NX
Nastran
Fluent, Gambit
SolidCAM
Eagle

OTHER
Vendor List
Design Links

Editing Tips
edit SideBar
SEARCH

correctness if you are not sure.

Task 1: Haptic Ball

Complete the haptic ball scene that has been started for you in haptic_ball_team50.m. Change the filename to match your team number, and list your team number and the names of your team members at the top of the file.
The graphics for this scene are shown in the middle image at left. Again, the position of the PHANToM tip is shown as a red circle, the ball is shown as a transparent rainbow sphere, and a scaled version of the force vector is shown as a thick black line.

Modify the code between the two lines of stars to push the user out of the ball whenever they come inside, using a virtual spring mapping. The force should push them straight out of the ball, and the magnitude of the force should be proportional to their penetration depth. The stiffness of your spring should be k (already defined for you in the code). Please comment your code.

Use the graphics to debug your calculations in simulation (with hardware set to false) until all of your team members are convinced the calculations are correct. Only then are you allowed to try your code on the real PHANToM. You are welcome to show your code's output to a member of the teaching team to get their opinion of its

Task 2: Haptic Damping

Complete the haptic damping scene that has been started for you in haptic_damping_team50.m. Change the filename to match your team number, and note your team number and the names of your team members at the top of the file.

The graphics for this scene are shown in the bottom image at right. Again, the position of the PHANToM tip is shown as a red circle, and a scaled version of the force vector is shown as a thick black line.
correctness if you are not sure.

Task 2: Haptic Damping

Complete the haptic damping scene that has been started for you in haptic_damping_team50.m. Change the filename to match your team number, and note your team number and the names of your team members at the top of the file.

The graphics for this scene are shown in the bottom image at right. Again, the position of the PHANToM tip is shown as a red circle, and a scaled version of the force vector is shown as a thick black line.

Modify the code between the two lines of stars to output a viscous damping force that always acts to slow the user down. This force should act in the opposite direction to the user's velocity vector, and its magnitude should scale with the magnitude of their velocity vector. The viscosity of your damper should be b (already defined for you in the code). Please comment your code.

When correctly implemented, viscous damping should feel like you are moving your hand through molasses or honey. There should not be any jittering in the force. This means you will need to lowpass filter your velocity vector to reduce quantization noise.

$X(\mathrm{~mm})$
Use the graphics to debug your calculations in simulation (with hardware set to false) until all of your team members are convinced the calculations are correct. Only then are you allowed to try your code on the real PHANToM. You are welcome to show your code's output to a member of the teaching team to get their opinion of its correctness if you are not sure.

PHANToM Rules

- You will need to reserve the PHANToM computer in order to test your code. Here is the link to the reservation system.
- Copy only your haptic_box_demo.m, haptic_ball_teamXX.m, and haptic_damping_teamXX.m scripts, not the rest of the phantom simulator files. Use your team's directory in the working directory on the computer's desktop.
- Check the calibration of the PHANToM by calling phantomJointAngles from the command line. If the encoders are not correctly zeroed, run phantomZero from the command line.
damping force that always acts to slow the user down. This force should act in the opposite direction to the user's velocity vector, and its magnitude should scale with the magnitude of their velocity vector. The viscosity of your damper should be b (already defined for you in the code). Please comment your code.
When correctly implemented, viscous damping should feel like you are moving your hand through molasses or honey. There should not be any jittering in the force. This means you will need to lowpass filter your velocity vector to reduce quantization noise.

Use the graphics to debug your calculations in simulation (with hardware set to false) until all of your team members are convinced the calculations are correct. Only then are you allowed to try your code on the real PHANToM. You are welcome to show your code's output to a member of the teaching team to get their opinion of its correctness if you are not sure.

PHANToM Rules

- You will need to reserve the PHANToM computer in order to test your code. Here is the link to the reservation system.
- Copy only your haptic_box_demo.m, haptic_ball_teamXX.m, and haptic_damping_teamXX.m scripts, not the rest of the phantom simulator files. Use your team's directory in the working directory on the computer's desktop.
- Check the calibration of the PHANToM by calling phantomJointAngles from the command line. If the encoders are not correctly zeroed, run phantomZero from the command line.
- Start by running haptic_box_demo. m to get a feel for how it works.
- You must have the PHANToM emergency stop down (no forces) the first time you run any code, even the demo code.
- You must firmly grip the PHANToM gimbal every time you run any code.
- Someone must have their hand on the emergency stop whenever the PHANToM is running.

Submission

1. Start an email to meam520@seas.upenn.edu
2. Make the subject $P H A N T o M$ Haptics: Team $X X$, replacing $X X$ with your team number.
3. Attach both of your correctly named MATLAB files to the email. It should be haptic_ball_teamXX.m and haptic_damping_teamXX.m, where $X X$ is your team number, plus any additional files you may have created, also named according to this convention.
4. Send the email.

Please come talk to the teaching team or post questions on Plazza if you get stuck on any part of this assignment.
PHANToM Haptics Starter Code (v1)

PHANToM Rules

I. You must reserve the PHANToM computer in order to test your code. You may reserve only one one-hour slot at a time. Respect the next team by finishing on time.
2. Copy only your haptic_box_demo.m, haptic_ball_teamXX.m, and haptic_damping_team X X.m scripts, not the rest of the phantom simulator files. Use your team's folder in the working directory on the computer's desktop.
3. Check the calibration of the PHANToM by calling phantomJointAngles from the MATLAB command line. If the joint angles are not very close to zero when the PHANToM is in the zero pose (right), run phantomZero from the command line and follow the prompts.
4. Start by running haptic_box_demo.m to get a feel for how it works.

5. You must have the PHANToM emergency stop down (no forces) the first time you run any code, even the demo code. Watch the graphical output to see if your code is doing what it should. The black line shows a scaled force vector.
6. You must firmly grip the PHANToM gimbal every time you run any code.
7. Someone must have their hand on the emergency stop whenever the PHANToM is running. Depress it right after your code finishes.

Google calendar

Click on an open appointment slot to sign up. If no slots are available, please try a different time range. To cancel an appointment slot you've already booked, leave this sign-up page and delete the event from your own calendar.

PHANToM Rules

I. You must reserve the PHANToM computer in order to test your code. You may reserve only one one-hour slot at a time. Respect the next team by finishing on time.
2. Copy only your haptic_box_demo.m, haptic_ball_teamXX.m, and haptic_damping_team X X.m scripts, not the rest of the phantom simulator files. Use your team's folder in the working directory on the computer's desktop.
3. Check the calibration of the PHANToM by calling phantomJointAngles from the MATLAB command line. If the joint angles are not very close to zero when the PHANToM is in the zero pose (right), run phantomZero from the command line and follow the prompts.
4. Start by running haptic_box_demo.m to get a feel for how it works.

5. You must have the PHANToM emergency stop down (no forces) the first time you run any code, even the demo code. Watch the graphical output to see if your code is doing what it should. The black line shows a scaled force vector.
6. You must firmly grip the PHANToM gimbal every time you run any code.
7. Someone must have their hand on the emergency stop whenever the PHANToM is running. Depress it right after your code finishes.

phantomZero

PHANToM Rules

I. You must reserve the PHANToM computer in order to test your code. You may reserve only one one-hour slot at a time. Respect the next team by finishing on time.
2. Copy only your haptic_box_demo.m, haptic_ball_teamXX.m, and haptic_damping_team X X.m scripts, not the rest of the phantom simulator files. Use your team's folder in the working directory on the computer's desktop.
3. Check the calibration of the PHANToM by calling phantomJointAngles from the MATLAB command line. If the joint angles are not very close to zero when the PHANToM is in the zero pose (right), run phantomZero from the command line and follow the prompts.
4. Start by running haptic_box_demo.m to get a feel for how it works.

5. You must have the PHANToM emergency stop down (no forces) the first time you run any code, even the demo code. Watch the graphical output to see if your code is doing what it should. The black line shows a scaled force vector.
6. You must firmly grip the PHANToM gimbal every time you run any code.
7. Someone must have their hand on the emergency stop whenever the PHANToM is running. Depress it right after your code finishes.
$\Theta \bigcirc$ Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/02 haptics/p02-starter-v1/haptic_box_demo.m

$\Theta \bigcirc$ Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/02 haptics/p02-starter-v1/haptic_box_demo.m

$\Theta \bigcirc$ Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/02 haptics/p02-starter-v1/haptic_box_demo.m

Questions?

Project 2 Extra Credit

Update the haptic box demo so the user is outside the box and can touch all surfaces without popping through, especially at the corners

Figure 6: Virtual Cubes. Figure at left illustrates reasonable force vectors for cube with slightly compliant surface. For the point shown in figure at right, it is not clear which of forces 1,2 and 3 should be exerted. This is path dependent.

Figure 7: Solution to corner problem with cubes. Dividing cube into regions shown provides simple solution to path ambiguity problem. In 3-D, regions are pyramid in shape and permit stable behavior at edges and corners. If large forces are exerted at corners, probe point may move into the adjacent region and be pushed off object giving the sensation of "plucking" the corner.

Solve it better than Massie and Salisbury....

Questions?

What else can we do with a PHANToM?

We can use it as an autonomous robot.

What movement should we have it make?

How can we make the PHANToM replicate this recorded movement?

\%\% Set hardware mode, duration, and warnings
\% Set whether to use the actual PHANToM hardware. If this variable is \% to false, the software will simulate the presence of a user by read. \% pre-recorded trajectory. You should use this mode to debug your cor \% before running anything on the PHANTOM computer. Once you are on tr \% PHANTOM/PUMA computer in Towne B2, you may set this variable to true \% sure to run your code with the emergency stop down to prevent the \% application of forces to make sure everything works correctly on the \% robot. Make sure to hold onto the PHANToM tightly and keep a hand \% emergency stop.
hardware $=$ true;
\% If not using the hardware, turn off warnings triggered when you comr

replay loops: no forces

replay loops:
spring force

Does this look good?

record taps

replay loops:
spring force, fixed kinematics

Much better!

replay tap: spring force

Does this look good?

How can we improve the controller's tracking?

damping individual

damping both (blurry)

replay loops final

Very nice!

replay taps final

Is it perfect?

Questions?

Homework 4:
Velocity Kinematics and Jacobians
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.
October 23, 2012
This assignment is due on Friday, November 2 (updated), by 5:00 p.m. sharp. You should aim to turn the paper part in during class the day before. If you don't finish until later in the day, you can turn in to Professor Kuchenbecker's office, Towne 224. Late submissions will be accepted until 5:00 p.m. on 5 , but they will be penalized by 25%. After that deadline, no further assignments may be submitted.
You may talk with other students about this assignment, ask the teaching team questions, use a calculator and consult outside sources such as the Internet. To help you actually learn the materia,

Written Problems (60 points)

This entire assignment is written and consists of two significantly adapted problems from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions on both questions. Write in pencil, show your work clearly, box your answers, and staple your pages together.

1. Adapted SHV 4-20, page 160 - Three-link Cylindrical Manipulator (30 points)

The book works out the DH parameters and the transformation matrix T_{3}^{0} for this robot on pages 85 and 86 ; you are welcome to use these results directly without rederiving them.
(a) Use the position of the end-effector in the base frame to calculate the 3×3 linear velocity Jacobian J_{v} for the three-link cylindrical manipulator of Figure 3.7 on page 85
(b) Use the positions of the origins o_{i} and the orientations of the z-axes z_{i} to calculate the 3×3 linear velocity Jacobian J_{v} for the same robot. You should get the same answer as before.
c) Find the 3×3 angular velocity Jacobian J_{ω} for the same robot.
(d) Find this robot's 6×3 Jacobian J.
(e) Imagine this robot is at $\theta_{1}=\pi / 2 \mathrm{rad}, d_{2}=0.2 \mathrm{~m}$, and $d_{3}=0.3 \mathrm{~m}$, and its joint velocities are $\dot{\theta}_{1}=0.1 \mathrm{rad} / \mathrm{s}, \dot{d}_{2}=0.25 \mathrm{~m} / \mathrm{s}$, and $d_{3}=-0.05 \mathrm{~m} / \mathrm{s}$. What is v_{3}^{0}, the linear velocity vector of the end-effector with respect to the base frame, expressed in the base frame? Make sure to provide units with your answer.
(f) For the same situation, what is ω_{3}^{0}, the angular velocity vector of the end-effector with respect to the base frame, expressed in the base frame? Make sure to provide units with your answer.
(g) Use your answers from above to derive the singular configurations of the arm, if any. Here we are concerned with the linear velocity of the end-effector, not its angular velocity. Be persistent with the calculations; they should reduce to something nice
(h) Sketch the cylindrical manipulator in each singular configuration that you found, and explain what effect the singularity has on the robot's motion in that configuration.

Graded Homework 4 available.

Midterm Exam

MEAM 520, Introduction to Robotics
University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D

November 8, 2012

You must take this exam independently, without assistance from anyone else. You may bring in a calculator and two $8.5 " \times 11^{\prime \prime}$ sheets of notes for reference. Aside from these two pages of notes, you may not consult any outside references, such as the textbook or the Internet. Any suspected violations of Penn's Code of Academic Integrity will be reported to the Office of Student Conduct for investigation.

This exam consists of several problems. We recommend you look at all of the problems before starting to work. If you need clarification on any question, please ask a member of the teaching team. When you work out each problem, please show all steps and box your answer. On problems involving actual numbers, please keep your solution symbolic for as long as possible; this will make your work easier to follow and easier to grade. The exam is worth a total of 100 points, and partial credit will be awarded for the correct approach even when you do not arrive at the correct answer.

	Points	Score
Problem 1	20	
Problem 2	20	
Problem 3	15	
Problem 4	20	
Problem 5	25	
Total	100	

I agree to abide by the University of Pennsylvania Code of Academic Integrity during this exam. I pledge that all work is my own and has been completed without the use of unauthorized aid or materials.

Signature

Date \qquad

1

Regrades available.

