
MEAM 520
Haptic Interface Hardware

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP)

MEAM Department, SEAS, University of Pennsylvania

Lecture 16: November 13, 2012

http://www.youtube.com/watch?v=6igNZiVtbxU&feature=player_detailpage%23t=312s
http://www.youtube.com/watch?v=6igNZiVtbxU&feature=player_detailpage%23t=312s
http://www.youtube.com/watch?v=6igNZiVtbxU&feature=player_detailpage%23t=312s

Midterm Exam

MEAM 520, Introduction to Robotics
University of Pennsylvania

Katherine J. Kuchenbecker, Ph.D.

November 8, 2012

Name

You must take this exam independently, without assistance from anyone else. You may bring
in a calculator and two 8.5”×11” sheets of notes for reference. Aside from these two pages of notes,
you may not consult any outside references, such as the textbook or the Internet. Any suspected
violations of Penn’s Code of Academic Integrity will be reported to the Office of Student Conduct
for investigation.

This exam consists of several problems. We recommend you look at all of the problems before
starting to work. If you need clarification on any question, please ask a member of the teaching
team. When you work out each problem, please show all steps and box your answer . On problems
involving actual numbers, please keep your solution symbolic for as long as possible; this will make
your work easier to follow and easier to grade. The exam is worth a total of 100 points, and partial
credit will be awarded for the correct approach even when you do not arrive at the correct answer.

Points Score

Problem 1 20

Problem 2 20

Problem 3 15

Problem 4 20

Problem 5 25

Total 100

I agree to abide by the University of Pennsylvania Code of Academic Integrity during

this exam. I pledge that all work is my own and has been completed without the use

of unauthorized aid or materials.

Signature

Date

1

Probably graded by next Tuesday

Project 1 : PUMA Light Painting

Update?

Manipulator Hardware and
Control

Slides created by
Jonathan Fiene

Mechanical Structure

Actuators

Sensors

Controller

A Biological Inspiration

Bones
Joints

Muscles

Kinesthetic
Tactile
Vision
Vestibular

Frame / Links
Joints

Electric Motors
Hydraulics
Pneumatics
SMA, etc.

Encoders
Load Cells
Vision
Accelerometers

Brain
Spinal Cord Reflex

Computer
Local feedback

Photo © Immersion Corp.

MotorAmplifier θ

i

Vicmd

MotorAmplifier

i

Vicmd Trans-
mission

θjointθ

MotorAmplifier θ

i

Vicmd Trans-
mission

θjoint

Sensor

Mechanical Structure

Actuators

Sensors

Controller

A Biological Inspiration

Bones
Joints

Muscles

Kinesthetic
Tactile
Vision
Vestibular

Frame / Links
Joints

Electric Motors
Hydraulics
Pneumatics
SMA, etc.

Encoders
Load Cells
Vision
Accelerometers

Brain
Spinal Cord Reflex

Computer
Local feedback

Photo © Immersion Corp.

MotorAmplifier θ

i

Vicmd Trans-
mission

θjoint

Sensor

Computer

ADC/
QENC

DAC

Control
Software

other

•Runs a servo loop at a fixed rate, often 1000 Hz

•Electrically connects to your hardware through an ISA
card, PCI card, Firewire cable, USB cable, or other.

•At each iteration, samples all of the sensors, computes
the location of the robot, determines the forces and
torques that should be exerted in response, and sends
appropriate current commands to all of the system’s
actuators.

Computer

Some material adapted from slides by A. Okamura and W. Provancher

inside the Puma260 controller

MotorAmplifier θ

i

Vicmd Trans-
mission

θjoint

Sensor

Computer

ADC/
QENC

DAC

Control
Software

Typically, roboticists treat each joint independently, as a single-input/single-output (SISO) model.

Adequate for applications that don’t involve very fast motions, especially if the transmission
has a large gear reduction, which helps decouple the links from one another.

This is what we do on the PUMA. :)

Common Controllers

Joint Dynamics (SHV 6.2)

Linear Model of Electrical and Mechanical Dynamics

Mechanical Structure

Actuators

Sensors

Controller

A Biological Inspiration

Bones
Joints

Muscles

Kinesthetic
Tactile
Vision
Vestibular

Frame / Links
Joints

Electric Motors
Hydraulics
Pneumatics
SMA, etc.

Encoders
Load Cells
Vision
Accelerometers

Brain
Spinal Cord Reflex

Computer
Local feedback

Photo © Immersion Corp.

Homework 5: Input/Output Calculations for a Real Robot

MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.

November 13, 2012

This assignment is due on Tuesday, November 20, by 5:00 p.m. sharp. You should aim to turn the
paper part in during class that day. If you don’t finish until later in the day, you can turn it in to Professor
Kuchenbecker’s office, Towne 224. Late submissions will be accepted until 5:00 p.m. onWednesday, November
21, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator
and other tools, and consult outside sources such as the Internet. To help you actually learn the material,
what you write down should be your own work, not copied from a peer or a solution manual.

SensAble Phantom Premium 1.0 (60 points)

This entire assignment is focused on a particular robot – the SensAble Phantom Premium 1.0. As shown
in the photo below left, the Phantom is an impedance-type haptic interface with three actuated rotational
joints. Designed to be lightweight, stiff, smooth, and easily backdrivable, this type of haptic interface enables
a human user to interact with a virtual environment or control the movement of a remote robot through the
movement of their fingertip while simultaneously feeling force feedback.

x
0

y
0

z
0

l
1

l
2

l
3

A thimble is attached to the tip of the robot via a passive non-encoded three-axis gimbal to allow the user
to move the robot around while freely rotating their fingertip. As shown in the diagram above right, the
Phantom haptic device looks similar to the standard RRR articulated manipulator base, but it uses a unique
four-bar mechanism to co-locate the shoulder and elbow joints while also keeping the upper arm and forearm
in the plane that intersects the axis of the waist joint.

Each of the four questions below includes both a written explanation and the programming of a specific
Matlab function. For the paper parts, write in pencil, show your work clearly, box your answers , and staple
your pages together. For the programming, download the starter code from this assignment’s page on the
class wiki, change all function and file names to include your PennKey, comment your code, and follow the
instructions at the end of this document to submit all of your Matlab files.

1

My definition of a haptic interface

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

Connects sensing to acting with fast processing

Remote

Virtual

Assistive Interaction: augments human
sensing and/or motion capabilities in real
physical environments

Teleoperation: extends the reach of the human hand
to remote, hazardous, unreachable environments

Simulation: enables humans to touch geometric and
dynamic computer-based data and models

Real
Environment

SensAble Phantom Premiums

Immersion Impulse Engine

SensAble Omni

Novint Falcon

MPB Freedom6S

Commercial Kinesthetic Haptic Interfaces

Force Dimension Omega

The PHANToM Haptic Interface:

A Device for Probing Virtual Objects

Thomas H. Massie and J. Kenneth Salisbury.
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts

1. Abstract
This paper describes the PHANToM haptic interface - a device which measures a user’s finger tip position and
exerts a precisely controlled force vector on the finger tip. The device has enabled users to interact with and feel a
wide variety of virtual objects and will be used for control of remote manipulators. This paper discusses the design
rationale, novel kinematics and mechanics of the PHANToM. A brief description of the programming of basic shape
elements and contact interactions is also given.

2. Introduction
A dominant focus in robotics research labs has traditionally been the development of autonomous systems - those
which operate without human supervision or interaction. However, robotic systems which are under direct human
control have begun to enjoy a resurgence of interest in recent years, in part due to advances in robot and human
interface technologies. These new interactive systems (telerobotic) promise to expand the abilities of humans, by
increasing physical strength, by improving manual dexterity, by augmenting the senses, and most intriguingly, by
projecting human users in to remote or abstract environments. In this paper we focus on our work to develop a
means for interacting with virtual mechanical objects; this is an important stepping stone toward the development of
enhanced remote manipulation systems in which simultaneous interaction with real and virtual objects will be
possible.

At the MIT Artificial Intelligence Laboratory, we have been developing haptic interface devices to permit touch
interactions between human users and remote virtual and physical environments. The Personal Haptic Interface
Mechanism, PHANToM, shown in Figure 1, has evolved as a result of this research (Massie, 1993). The
PHANToM is a convenient desktop device which provides a force-reflecting interface between a human user and a
computer. Users connect to the mechanism by simply inserting their index finger into a thimble. The PHANToM
tracks the motion of the user’s finger tip and can actively exert an external force on the finger, creating compelling
illusions of interaction with solid physical objects. A stylus can be substituted for the thimble and users can feel the
tip of the stylus touch virtual surfaces. By stressing design principals of low mass, low friction, low backlash, high
stiffness and good backdrivability we have devised a system capable of presenting convincing sensations of contact,
constrained motion, surface compliance, surface friction, texture and other mechanical attributes of virtual objects.

3. Three Enabling Observations
Three observations influenced the basic design of the PHANToM. The first observation established the type of
haptic stimulation that the device would provide, the second determined the number of actuators that the device
would require and the third established the volume or workspace that the device would possess.

1. Force and motion are the most important haptic cues. A significant component of our ability to “visualize”,
remember and establish cognitive models of the physical structure of our environment stems from haptic
interactions with objects in the environment. Kinesthetic, force and cutaneous senses combined with motor
capabilities permit us to probe, perceive and rearrange objects in the physical world. Even without detailed
cutaneous information (as with a gloved hand or tool), the forces and motions imparted on/by our limbs and
fingers contribute significant information about the spatial map of our environment. Information about how an
object moves in response to applied force and the forces which arise when we attempt to move objects can
provide cues to geometry (shape, locality, identity), attributes (constraint, impedance, friction, texture, etc.) and
events (constraint, change, contact, slip) in the environment. Unlike other sensory modalities, haptic interactions
permit two-way interaction via work exchange. Controlled work can be performed on dynamic objects in the
environment and modulated to accomplish tasks.

2. Many meaningful haptic interactions involve little or no torque. Perhaps the most significant design feature of
the PHANToM is the passive, 3 degree-of-freedom “thimble-gimbal”, shown in Figure 2. The decision to use the

DSC-Vol. 55-1, Dynamic Systems and Control:
Volume 1

ASME 1994

T. H. Massie and J. K. Salisbury. The PHANToM haptic
interface: A device for probing virtual objects. In
Proceedings of the Third International Symposium on
Haptic Interfaces for Virtual Environment and
Teleoperator Systems, ASME Dynamic Systems and
Control, Volume 55(1), pages 295-300. American
Society of Mechanical Engineers, 1994.

This is the most highly cited paper in the field of
haptics. It describes the design objectives of the
Phantom haptic interface, which was developed in Ken
Salisbury's lab at MIT. The paper also anecdotally
describes the reactions of users of the device. The
described device is very similar to the SensAble
Phantom Premium 1.0 you are using in this class.

Three Necessary Criteria

1. Free space must feel free.

2. Solid virtual objects must feel stiff.

3. Virtual constraints must not be easily
saturated.

We want a design that can achieve all of these
objectives simultaneously.

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Incremental
Optical Encoder

Brushed Permanent Magnet
Direct Current Motor

Current Amplifier

Computer Interface Card

Capstan & Cable Drive
Stiff Metal Linkages

Common Haptic Interface Components

Elements of Haptic Interfaces

Katherine J. Kuchenbecker

Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
kuchenbe@seas.upenn.edu

Course Notes for MEAM 625, University of Pennsylvania

Adapted from Section 3.1 of Professor Kuchenbecker’s Ph.D. thesis [3].

A haptic interface plays the important role of connecting the user to the
controller during interactions with remote and virtual objects. Such systems in-
corporate mechanical, electrical, and computational elements, which all interact
to create the touch-based sensations experienced by the user. This document
is concerned specifically with actuated impedance-type interfaces, which cur-
rently dominate the field due to their excellent free-space characteristics and
their widespread use in a variety of applications. During an interaction, the
controller of an impedance-type device must measure the user’s hand motion
and apply an appropriate force in response. Impedance-type haptic interfaces
vary in design, but they usually include a series of electrical and mechanical
elements between the handle and the computer, as described below.

Overview

Haptic interfaces typically provide two or three degrees of freedom in position,
sensing the user’s motion and applying feedback forces within this workspace.
Many devices also permit changes in the orientation of the end effector; these
rotational degrees of freedom can be unsensed, sensed but not actuated, or
sensed and actuated. The remainder of this discussion will focus on translation
rather than orientation, though the described design features can be applied to
either.

Figure 1 illustrates the chain of elements typically present in each axis of a
haptic interface. For clarity, the illustration depicts a device with a single degree
of freedom, but typical systems combine several degrees of freedom in parallel or
series to allow unrestricted translation and/or orientation. Although differences
exist, individual position axes of most mechanisms can be represented by such
an arrangement. The terms “haptic interface” and “master” are often used
interchangeably to represent all electrical and mechanical elements depicted in
Figure 1, extending from the amplifier and encoder to the handle.

1

Your General Haptics Programming Task

Specify:
Force vector

As a function of:
Everything that is known, including

position vector, velocity vector, time,
model geometry, model properties,

keyboard inputs, mouse inputs, button inputs,
 and randomness

In order to:
Fool the user into thinking they are touching something

How would you make the user believe
they are touching a suspended sphere?

High-Level Approach For Rendering Shapes
Used by Massie and Salisbury in 1994

Now known as the Vector-Field Approach

•Force is a function of only the present position

•Divide space into volumes that represent objects

•The rest of the volume is free space.

•Object contact is rendered by keeping track of a
geometric proxy. It stays on the surface of the object,
and we use a virtual spring to pull the user toward its
location, always perpendicular to the surface.

!Fh = f(!xh)

Hardware
We have described two types of transmissions typically used in
designing haptic interfaces: the capstan/cable drive and the
direct drive. Both can easily be experimented with [142]–
[144]. We also mentioned two major types of motors: wound
and coreless. Table 1 lists the expected characteristics of a haptic
knob built with one of the commonly used dc motors, sourced
with an attached optical encoder. The two motors have almost
the same form factor and the same nominal voltage.
The other components of an experimental system include a

computer, say a PC with appropriate input-output (I/O)
boards, having the ability to read the encoder signals and to out-
put a single analog voltage. Note that it is not necessarily the
most expensive nor the most sophisticated I/O boards that give
the best result. Delay is a determinant factor for precise and sta-
ble haptic simulation and, therefore, plain and fast designs are
preferable over slower, complex, multifunction designs. Other
possibilities include single-board computers linked to a host or
dedicated I/O boards connected to a computer parallel port or
other appropriate standard I/O channel.
Amplifiers can be procured ready-made from commercial

sources. With some engineering effort, it is also possible to
build them rather easily from monolithic power-chips such as
the LM12CL or LM675 (http://www.national.com/mpf/
LM/LM12CL.html, LM675.html) or Apex Microtechnology
devices (http://eportal.apexmicrotech.com/). Both voltage
and current drives can be built around these chips.

Software
Real-time software is needed to experiment with haptic
force-feedback or to develop an application. Figure 10 shows a
bare-bones diagram of a force-feedback haptic interface soft-
ware diagram. It is described for a general device in which the
symbols could designate vector quantities representing forces
and torques for a multi-DoF system. With the haptic knob, we
have one angle and one torque.
Boxes in thin black lines indicate steps that are performed

sequentially in a hard real-time thread. Hard real-time means
that computations must run at a regular rate and terminate
within a predictable time interval before the next update.
Regularity is required since a
fixed rate is assumed by both
theoretical and practical con-
siderations. Updates that jitter
or occasionally miss samples
create clicks and pops in the
simulation if the hardware is
responsive or even destabilize
the system in the worst case.
One must exercise caution
when using real-time exten-
sions to general purpose oper-
ating systems. (Linux real-time
frameworks have given excel-
lent results.) As seen earlier,
rates as high as 10 kHz may be
needed. Precision should then

be of a few microseconds. If the simulation is soft or if the
device is unresponsive, 100 Hz may suffice.
Step 1 converts raw encoder counts into physical units, such

as radians, if the device uses encoders. If it uses analog sensors
(not represented) the counters are replaced by analog-to-
digital conversion associated with an optional oversampling
plus averaging step to reduce noise. The determination of
parameters a and b (denoted as scalars by abuse of notation)

Knob EncoderMotor

Bracket

Figure 9. One DoF force-feedback haptic interface.

Table 1. Expected characteristics of a haptic knob constructed with a
wound Pittman model 8693 motor (19 V) or a coreless Maxon model

RE25 motor (graphite brushes, 18 V).

Characteristic Unit Wound Coreless

Inertia (not including the inertia of the knob) kgm2 3 10!6 1.6 0.95

Dry friction Nm 3 10!3 2.1 –

Viscous damping (when short-circuited) Nm s rd!1 3 10!3 0.15 0.21

Peak torque Nm 3 10!3 150 175

Continuous torque Nm 3 10!3 22 23

Inductance mH 1.5 0.15

Terminal resistance X 2.6 1.26

Thermal time constant (motor/windings) s 720/– 910/12

Encoder resolution (off-the-shelf) CPR 1024 1000

F0 (measured when clamping down the output shaft) Hz – 600

Graphic Application and
Other Slower Processes

1

2

3

4

5

Counter(s)

Device

Amplifier(s)

Digital to Analog Converter(s)

qk–1 = apk–1 + b

xk–1 = Λ (qk–1)

fk = Fi (xk–1)

τk = J

⊥

fk

rk = cτk

Figure 10. Bare-bones software architecture for a force
feedback haptic interface. There is at least a hard real-time
thread running at high rate to update forces (thin lined
boxes), a slower soft real-time thread to execute
computations that do not require fast update rates (thick
lined box), and appropriate communication between the two
processes. Hardware components are indicated in grey.

IEEE Robotics & Automation MagazineDECEMBER 2007 99

Illustration from V. Hayward and K. MacLean. “Do It Yourself Haptics: Part 1.”
IEEE Robotics and Automation Magazine, December, 2007, pp. 88-104.

Typical Software Configuration

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Graphics, Remote Robot,
and Other Slower Processes

!xk = Λ(!qk)
Forward Kinematics: from joint values to tip position

!fk = Fi(!xk)

Force Computation: from tip position to tip force

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Digital or Serial or D2A
(Digital-to-Analog Converter)

Counter or Serial or A2D
(Analog-to-Digital Converter)

Typical Software Configuration

to the
current amplifiers

from the
motion sensors

Input: from sensor signals to counts

Output: from counts to command signals

Q1

Q2

Q3

Counter or Serial or A2D
(Analog-to-Digital Converter)

Input: from sensor signals to counts

Graphics, Remote Robot,
and Other Slower Processes

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Typical Software Configuration

from the
motion sensors

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

θ1

θ2

θ3

d1

d2

d3

 or

d1

θ2

d3

or

[

.

.

.

]

or

Digital or Serial or D2A
(Digital-to-Analog Converter)

to the
current amplifiers

Output: from counts to command signals

!xk = Λ(!qk)
Forward Kinematics: from joint values to tip position

x

y

z

!fk = Fi(!xk)

Force Computation: from tip position to tip force

Fx

Fy

Fz

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

τ1

τ2

τ3

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

r1

r2

r3

Input Processing Steps

• Get counts Qj from encoder counters, serial
communications, or analog-to-digital conversions.

• Convert counts to sensor shaft angles θsj or
sensor displacements dsj using knowledge of the
sensor’s characteristics.

• Convert sensor angles to joint coordinates qj
(joint angles θj or joint displacements dj) using
the gear ratio. In this process, use a negative sign
to flip the joint angle direction if desired.

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

• Known configurations

• Ranges

• Record and graph

• Check before you use the movement information
to output forces.

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Q1

Q2

Q3

Counter or Serial or A2D
(Analog-to-Digital Converter)

Input: from sensor signals to counts

Graphics, Remote Robot,
and Other Slower Processes

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Typical Software Configuration

from the
motion sensors

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

θ1

θ2

θ3

d1

d2

d3

 or

d1

θ2

d3

or

[

.

.

.

]

or

Digital or Serial or D2A
(Digital-to-Analog Converter)

to the
current amplifiers

Output: from counts to command signals

!xk = Λ(!qk)
Forward Kinematics: from joint values to tip position

x

y

z

!fk = Fi(!xk)

Force Computation: from tip position to tip force

Fx

Fy

Fz

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

τ1

τ2

τ3

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

r1

r2

r3

Force Computation

tion-based training of a complete surgical team, which
often involves several technicians focused on neuro-
physiology monitoring. Simulated neural data is
streamed out via Ethernet for remote monitoring, and
can be visualized on a console similar to what would be
available intraoperatively to a technician.

Automated evaluation and feedback
Another exciting possibility for virtual surgery is the

use of simulation environments to automatically eval-
uate a trainee’s progress and provide targeted feedback
to help improve a user’s surgical technique.

A straightforward approach to evaluating a trainee’s
performance on the simulator is determining whether a
given objective has been achieved while avoiding injury
to vulnerable structures (such as nerves, ossicles, or
veins). However, many of the finer points of technique
are taught not because failure to adhere to them will
necessarily result in injury, but because it increases the
likelihood of injury. Therefore, it’s useful to be able to
quantify the risk inherent in the trainee’s performance.

We describe several metrics for evaluating a user’s
bone-drilling technique. We present approaches to both
visualize and validate these metrics (confirming that
they are medically meaningful).

Visibility testing
One of the most important ways to minimize risk in

temporal bone surgery is to only remove bone that is
within the line of sight. A saucerizing drilling technique
(removing bone to create a saucer-shaped cavity on the
bone surface) lets the surgeon avoid vulnerable struc-
tures just below the bone surface, using subtle visual
cues that indicate their locations. Removing bone by
undercutting (drilling beneath a shelf of bone that
obscures visibility) increases risk of structure damage.

In our environment, as a user removes each voxel of
bone, the simulator determines whether this voxel was
visible to the user at the time of removal. Using the same
ray-tracing techniques used for haptic rendering, the
system traces a line from the removed voxel to the vir-
tual eye point. If this ray intersects any voxels (other
than those currently in contact with the drill), the
removed voxel is determined to be invisible.

During or after a virtual procedure, a user can visu-
alize the visibility or invisibility of every voxel he or she
removed to explore the overall safety of the technique
and find specific problem areas. Voxels that were visi-
ble when removed appear in one color, while those that
were obscured are rendered in another color (see Fig-
ure 9). The scene might also be rotated and rendered
with only selected structures visible, allowing unob-
structed visualization of the removed voxels’ locations
and their proximities to crucial structures.

Although it makes intuitive sense that voxel visibil-
ity should be an appropriate metric for evaluating a
user’s performance, it’s important to validate this met-
ricand all automatic metricsagainst a clinically
standard assessment of user performance. In this case,
we use the data collected from the user study discussed
in the “Results” section, which includes complete sim-
ulated procedures by experts and novices, along with

scores assigned to each simulated procedure by an
experienced surgical instructor. A metric that corre-
lates well to an instructor’s manually assigned scores
will likely be an effective metric for automatic user
evaluation.

Figure 10 on the next page shows the results of corre-
lating computed voxel visibilities to an instructor’s score
(on a scale of 1 to 5) for each simulated procedure per-
formed by our study participants. Linear regression
shows a correlation coefficient of 0.68, which is partic-
ularly high considering that we based the manual eval-
uation on a wide array of factors, only one of which was
voxel visibility. This approach is suitable for assessing the
effectiveness of individual metrics, which we can com-
bine to form an overall score for a simulated procedure.

IEEE Computer Graphics and Applications 55

8 Virtual neurophysiology monitoring. The user drills near a simulated
nerve (in blue) and views a real-time simulated neural monitor, which also
provides auditory feedback.

9 Visualization of removed voxels. This interactive visualizationin which
the bone itself isn’t rendereddisplays the regions in which the trainee
exercised proper technique (visible voxels in green) and regions in which
he didn’t (obscured voxels in red). Undercutting in close proximity to the
sigmoid sinus (in blue) was dangerous because the trainee couldn’t see the
visual cues indicating the vein’s location below the bone surface.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 15, 2009 at 22:55 from IEEE Xplore. Restrictions apply.

!fk = Fi(!xk)

Force Computation: from tip position to tip force

transients and measured the accelerations felt during
tapping, exploring surface texture, and puncturing a
membrane [24], [35]. Empirical models were fit to this data,
tuned via user testing, and used to provide vibrotactile
feedback during virtual interactions, improving both task
execution and surface discrimination. This paper develops a
new method for generating contact transients and compares
its performance with previously explored approaches and
with the feel of real objects.

3 EVENT-BASED HAPTICS

Honoring the user’s sensitivity to and reliance on high-
frequency interaction transients, the paradigm of event-
based haptics defines an alternative display strategy for
improved realism. Rather than trying to generate adequate
force transients using closed-loop position feedback, this
method uses discrete event triggers to begin playback of
precomputed force histories. To achieve true realism, we
believe the accelerations experienced by the user at contact
should match real impact acceleration profiles. Building on
previous efforts in transient playback, we seek to explore
the event-based paradigm and understand its potential for
improving the realism of haptic interactions.

The dynamics of contact with rigid objects produce two
distinct, superimposed forces: an initial high-frequency
transient and a slower extended response. Fig. 2 shows a
force signal recorded from tapping on a hardwooden surface
with a stylus. Over long durations, the object opposes
penetration, yielding a quasistatic, low-frequency reaction
force. The shape of the short-duration transient at impact is
determinedbymaterial properties and initial user conditions,
including grasp configuration and incoming velocity. Impact
transients generally take the form of decaying sinusoids,
though multiple resonant modes and intermittent contact
may lead to a more complex response. It is these signals,
lasting tens of milliseconds, that create high-frequency
accelerations and allow the user to infer material properties
of the object. Virtual environments devoid of these high-
frequency cues will never feel truly realistic.

Event-based haptics aims to replicate the feel of real
interactions by adding high-frequency force transients at the
start of contact. An impact event is triggered when the stylus
moves through the surface of a virtual object. The entire
transient signal is computed and then overlaid with tradi-
tional proportional feedback for its short duration, as
depicted in Fig. 3. With tapping, the contact state is latched
during transient output, preventing multiple event detec-
tions. Because the shape of real transients depends on

material properties as well as impact velocity and user
impedance, a libraryof transient signalsmaybeutilized. Such
a library canbebuilt fromphysicalmeasurements orbasedon
multimodal vibration models and analysis. In this sense, the
haptic experience should closelymatch the audio behavior of
objects, possibly combining multiple resonant frequencies
[36]. Regardless of the method used to predetermine the
transient, its output remains deterministic up to the user’s
reaction time of approximately 150 ms [27] and, hence, does
not require continual sensor feedback or additional online
computation.

In addition to providing important high-frequency cues,
event-based forces can quickly decrease the user’s momen-
tum and reduce penetration into the virtual object. Bringing
the hand to a stop requires the force transient to be carefully
matched to the user’s incoming momentum. Under the
assumption of constant mass, momentum varies linearly
with incoming velocity vin. The transient signal magnitude
should thus be scaled by this measurable quantity. Care
must be taken to maintain force levels that do not over-
whelm the user’s incoming momentum to keep the surface
feeling passive and natural. Additionally, the apparent
impedance of a hand-held stylus can vary significantly with
hand configuration and grip force [37], foreshadowing the
possible importance of a hand impedance indicator in
future work. Present investigations have found it sufficient
to scale transient signals by incoming velocity, provided the
user maintains a consistent grip on the stylus.

Using standard haptic hardware, event-based rendering
can also take advantage of higher force levels than those
permissible with proportional feedback alone. Thermal
constraints prevent the motors from being driven with
high current for long periods of time; however, high-
frequency transient signals may exceed the steady-state
maximum for short durations, enabling faster, more
forceful momentum cancellation. These high current levels
are available in most haptic systems but are not leveraged
by traditional feedback algorithms.

KUCHENBECKER ET AL.: IMPROVING CONTACT REALISM THROUGH EVENT-BASED HAPTIC FEEDBACK 221

Fig. 2. Tapping on a hard wooden surface yields a high-frequency

transient force superimposed on a low-frequency response.

Fig. 3. Event-triggered open-loop force signals superimpose on

traditional penetration-based feedback forces.

Computing Joint Effort

• Calculate the device’s Jacobian matrix, J,
which depends on the present configuration.

• Multiply Cartesian tip force by JT, the
transpose of the Jacobian, to transform it to
joint efforts (torques and forces).

• Note that you need a different combination
of joint torques to create the same force at
different locations in the workspace.

• This approach stems from virtual work.

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

Output Processing Steps

• Know joint efforts (torques τi and/or forces Fi)
required to create the desired Cartesian tip force.

• Calculate motor torques τmi and/or linear motor
forces Fmi that will create those joint efforts, using
gear ratios. Remember to flip signs if needed.

• Compute the required actuator currents ii using the
torque constant of the motor.

• Compute appropriate command voltages Vi using
knowledge of the current amplifier.

• Work out DAC counts ri that will generate voltages.

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

•Runs a servo loop at a fixed rate, often 1000 Hz

•Electrically connects to your hardware through an ISA
card, PCI card, Firewire cable, USB cable, or other.

•Sensoray 626, Acromag 341, 482, 732, others

•At each iteration, samples all of the sensors, computes
the location of the user’s hand, determines the force
that should be exerted in response, and sends
appropriate current commands to all of the system’s
actuators.

•Need to read manual to understand how it works.

Computer
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

•Takes an information signal (usually an analog voltage)
from the computer and drives the requested amount
of current through the actuator.

•Note that this is a current drive scenario, not a voltage
drive. Motor torque is proportional to current,
regardless of speed, so we can essentially ignore the
motor’s electrical dynamics.

•Two common types are Pulse Width Modulation
(PWM) and Linear. KJK prefers linear amplifiers for
their high bandwidth and reduced electrical noise.

Current Amplifier
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Current Amplifier Circuit

Q1

Q2

Q3

Counter or Serial or A2D
(Analog-to-Digital Converter)

Input: from sensor signals to counts

Graphics, Remote Robot,
and Other Slower Processes

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Typical Software Configuration

from the
motion sensors

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

θ1

θ2

θ3

d1

d2

d3

 or

d1

θ2

d3

or

[

.

.

.

]

or

Digital or Serial or D2A
(Digital-to-Analog Converter)

to the
current amplifiers

Output: from counts to command signals

!xk = Λ(!qk)
Forward Kinematics: from joint values to tip position

x

y

z

!fk = Fi(!xk)

Force Computation: from tip position to tip force

Fx

Fy

Fz

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

τ1

τ2

τ3

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

r1

r2

r3

