MEAM 520
 From Simulation to Reality

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

YouTuhe
CHARLI Robot Gangnam Style

Gangnam Style CHARLI-2

RoMeLo
 ReaciatMonven Levenor

489,561 dua
Published on Oct 19, 2012 by RoMeLaVT
The CHARLI series humanoid robot is developed as a research platform to study bipedal walking and autonomous behaviors for humanoid robots. It is designed to be ultra light weight (under 15 kgs) for safety and low cost. As the next generation of the CHARLI series humanoid robots, CHARLI-2 improves stability and speed in walking, intelligence and autonomy, and soccer playing skills. CHARLI-L2 is also designed to participate in the autonomous robot soccer competition, RoboCup, in the Adult size league.

3,941 lkes, 200 dislikes
\& Artist Psy
Л Buy -Gangnam styto (zt
볍스틸마 on:
Google Play.
ITunes, AmazonMP3

wwu.digkey.com

Ad
Saturday Night Live -
Lids
by huluDotCom

51,081 viows

CHARLI-2 Stability Test
by RoMeLaVT
207,453 views

Mitt Romney Style
(Gangnam Style
by collegehumor
$4,302,426$ views

How do you think CHARLI-2 was taught to dance Gangnam Style?

Project I : PUMA Light Painting

+ Phttps://piazza.com/class\#fall2012/meam520/94

+ New Post

Q Search or add a post...
Instr Note Pcoded IK Test Function
Concerned about your team's inverse kinematics function? You are welcome to try running it through a pcoded test functio *ik \#instructor-note \#project1 Apuma

IK still not working...

Our team is currently trying to script our 3D painting. However, we are still unsure about our IK script. Will we get re
*matlab *project1
Instr Note PUMA Light Painting Tips
Here are a few tips for designing your light

painting given the constraints of the real
robot. - The default configurat
\#instructor-note \#project1 \#puma
$\begin{array}{lr}\text { Performances by Carbon Dance Theatr... } & \text { Mon } \\ \text { As presented in class last Thursday, two } & \\ \text { students in our class (Stella Latscha and } & \end{array}$ students in our class (Stella Latscha and
Dean Wilhelmi) have been working with \#funstuff \#instructor-poll

Instr Note Beautiful Light Paintings Fea... Mon Check out this article on Andrew Hall's beautiful light paintings:
http://www.wired.com/rawfile/2012/10/a.
\#funstuff \#instructor-note \#projectl
Instr Note Current PUMA Simulator Ve... Mon The current version of the PUMA simulator is V3. You can download the simulator here: http://medesign.seas.upenn.edu/up
\#instructor-note \#projectl \#puma

LED End-Effector and Recordings

Do you have any estimate on how close light points can be without interfering with each other? Are we allowed to do mul \#instructor-question \#project1 \#puma

Simulator giving slightly different LED... Mon
When we run the simulator (v2) it gives a slightly different position of the LED than
Views: <

Q\&A
Course Page
Manage Class
』 A^{3} Ki Katherine J. Kuchenbecker Note History:

PUMA Light Painting Tips

Here are a few tips for designing your light painting given the constraints of the real robot.

- The default configuration for the PUMA and the camera are shown in the attached image. The camera is located at a positive x value in frame zero, so most of the PUMA's drawing should take place in the $y-z$ plane, and the LED should probably face in the positive x direction. If you have a strong need to reorient the robot, that can be accommodated, but this setup is easiest.
- The robot will start at the base configuration (thetas $=0,0,0,0,-\mathrm{p} / 2,0$) at the beginning of your code.
- You should get your simulation to use only pumaServo calls, no pumaMove calls, so that all commands are known to satisfy the requirements.
- You should not base your motion commands off readings from pumaAngles unless you are very careful with the calculations. The simulated PUMA tracks your commands instantaneously, but the real robot will lag a bit primarily because it has friction; calls to pumaAngles on the hardware will return the real robot's joint angles, opening the possibility of closed-loop position control, but this is not what we intend for you to do on this project. Simply streaming position commands is perfect.
-The teaching team is fine-tuning the LED brightness to produce nice images; at present the LED is very bright. It's wise to make it easy to dim or brighten your entire painting.
- Your code should return the robot to the base configuration.
- Your code should not call pumaLEDOff in the middle of your painting, on the real PUMA the LED controller takes a couple of seconds to start up (i.e. pumaLEDOn takes a couple seconds to run). Instead use pumaLEDSet($0,0,0$), which sets the LED to black so that it does not appear in the image or video.

Average Response Time:

Online Now | This Week:

Special Mentions:

Katherine J. Kuchenbecker answered Extension on Project 1 ? in 3 min. 14 hours ago

Your team needs to turn in a light painting simulation.
This is ostensibly due today, and I know you've been working hard on it.

If you submit something incomplete, you will need to fix it before you work on the real robot.

Even if you think your simulation is perfect, there will probably be some small things to update.

Work hard, but don't freak out about the deadline.
Figure out the issues and get your submission in when you can. Post, email, or come to office hours for help.

Checking the code of the teams who have submitted already revealed an important bug in the simulator.

The joint velocity check is not being done correctly, so you can command very high joint velocities.

I radian per second is the maximum joint velocity you should ever be using.

We are working to release V4 of the simulator where this bug is patched, but svn server is down...

O https://piazza.com/class\#fall2012/meam520/99
MEAM 520 -
Q\&A
Course Page Manage Class

Katherine J. Kuchenbecker

+ Now Post Q Search or add a post...

- FAVORITES

- YESTIERDAY

project1

11:47PM
what's the reactive speed of puma? The code of our team has passed in pumaservo, but when run on the simulation of puma
Iproject1
Instr Noto PLEASE READ: About Joint ...
11:39PM
Many submissions are making use of
pumaAngles to get the current joint angle of the Puma to calculate the total movement \#important \#instructor-note \#projectl

hw 4 extension?

11:30PM
Is there any possible chance we could get perhaps an extension on the hw4 (perhaps
just 24 hours)? I know at least sever
\#homework4

Extension on Project 1?

My teammates and I have encountered various external factors that have taken time away from working on project 1 . We w \#instructor-question \#projectl

- THIS WEEK

Instr Note Pcoded IK Test Function

Concerned about your team's inverse kinematics function? You are welcome to try running it through a pcoded test functio
\#ik \#instructor-note \#project1 \#puma
 Note History:

PLEASE READ: About Joint Movement Limitations and Using pumaAngles

Many submissions are making use of pumaAngles to get the current joint angle of the Puma to calculate the total movement necessary to reach a destination. Often times this call to pumaAngles is directly after a call to pumaServo. Also most of these submissions are pushing each joint to move at 0.1 radians per 10 ms . We don't simulate dynamics in the simulator so when you call pumaServo, the movement happens instantly and calling pumaAngles directly after will get you your desired joint angles, but on the real Puma dynamics are alive and kicking. You will need to make some changes to make your light paintings run correctly.

First of all, running the joints at a speed of 0.1 radians per 10 ms is equal to 10 radians per second $/ 573$ degrees per second. Crazy, no? None of the joints can actually respond that quickly. In fact it's known that joint 3 is one of the slowest joints with a maximum speed of 80 degrees per second. This means if you call pumaServo to change joint 3 at 573 degrees per second a few things will happen:

1. The other joints will respond faster and your trajectory will not be as you planned. What was a circle in the simulator will now be heavily lopsided and silly looking.
2. The end effector will not be where you wanted it to be and will probably smash into something because joint 3 didn't get out of the way fast enough.
3. When you call the last pumaServo to get to a point and then immediately call pumaAngles in preparation for getting to the next point, joint three may still be lagging behind. Thus pumaAngles will give you data for a position you don't want and it will be out of date once joint 3 catches up. You'll perform difference calculations on that out of date data that is far away from what you commanded it to be and you'll get an error about moving further than the 0.1 radian angle limit.

The solution is to slow your joints down to a reasonable speed. Although, depending on the speed, the use of pumaAngles in the way described may still cause problem number 3 to occur. It may be worth looking into other methods of calculating a trajectory such as interpolating enough $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates to guarantee that both end effector velocities and joint velocities will be reasonable.

The 0.1 rad limit on successive commands is a time independent safety limit and thus not a valid limit on velocity. Please do not treat it as such. Overall, when running on the Puma, try to keep all joint velocities around $1 \mathrm{rad} / \mathrm{s}$ (about $57 \mathrm{deg} / \mathrm{s}$). This is a velocity that all six joints should be able to run at no problem.

A fix to the simulator will be coming scon to prevent large joint velocities.
*project1 *IMPORTANT

Here are a few tips for designing your ligh
painting given the constraints of the real robot. - The default configurat

Our team is currently trying to script our 3D painting. However, we are still unsure about our IK script. Will we get re
\#matlab \#project1

How is the light painting simulation going?
What challenges are you encountering?

After you submit your simulation, one of the TAs will check it and respond with suggestions.

When your team has something ready to run, you will need to meet with your TA to get trained on the robot.

MEAM.Design : MEAM520 - Introduction to Robotics

GENERAL Hall of Fame Laboratories	Calendar									
	Date	Topic (Linked to Lecture Slides)	Reading	Assignments Due	Project Deadlines					
Contact Info	01 Thu, 9/6	Course Logistics and Motivation								
	02 Tue, 9/11	Rotation Matrices	B.1, 2.1-2.3							
COURSES	$03 \mathrm{Tnu}, 9 / 13$	Homogenous Transformations	2.4-2.8							
MEAM 101	04 Tue, 9/18	Manipulator Kinematics	1.1-1.3, 3.1	HW01 (Flying Box)						
MEAM 201	05 Thu, 9/20	Denavit-Hartenberg (DH)	3.2							
MEAM 410/510	06 Tue, 9/25	More Denavil-Hartenberg (DH)	3.2							
MEAM 520	07 Thu, 9/27	Inverse Kinematics (IK)	3.3	HW02 (SCARA Robot)						
IPD 501	08 Tue, 10/2	More Inverse Kinematics (1K)	3.3							
SAAST	09 Thu, 10/4	PUMA 260 and Project 1								
	10 Tue, 10/9	More Manipulator Kinematics	3.3	HW03 (PUMA FK + SCARA IK)	PUMA Light Painting: Teams					
GUIDES	11 Thu, 10/11	No lecture - project work time								
Materials	12 Tue, 10/16	Velocity Kinematics	4.6		PUMA Light Painting: IK					
Laser Cutting	13 Thu, 10/18	More Velocity Kinematics	4.6, 4.9, 4.1							
3D Printing	12 Tue, 10/23	No lecture - fall break								
Machining	13 Thu, 10/25	Real Robots			PUMA Light Painting: Simulation					
ProtoTRAK	14 Tue, 10/30									
PUMA 260	$15 \mathrm{Thu}, 11 / 1$			HW04 (Jacoblans) due Friday						
PHANToM	(note: all items are due at 5:00 p.m. unless otherwise specified)									
BeagleBoard										
MAEVARM										
Phidget	Resources									
Tap Chart	Piazza Forum Blackboard (Gradebook and Lecture Recordings)									
	Mathworks Matlab Tutorial MEAM 520 Matlab Tutorial									
SOFTWARE										
SolidWorks	MEAM 520 Matlab TutorialTextbook: Robot Modeling and Control by Spong. Hutchinson, and Vidyasagar									
Matlab	SHV Errata (Seth Hutchinson)									
NX	SHV Errata (Seth Hutchinson + MEAM 520 Teaching Team) (Posted on Oct 10)									
Nastran Course Calendar										
Fluent, Gambit SolidCAM	MEAM 520									

NX
SHV Errata (Seth Hutchinson)
SHV Errata (Seth Hutchinson +
SHV Errata (Seth Hutchinson + MEAM 520 Teaching Team) (Posted on Oct 10)
Nastran
Fluent, Gambit
SolidCAM
Eagle
OTHER
Vendor List
Design Links

Editing Tips
edt SideBar
SEARCH

Go
Course Calendar

MEAM 520

Events shown in time zone: Eastern Time

Towne B2


```
@OO MEAM.Design :MEAM520-Introduction to Robotics
```

4 \vee 亚 + h http://medesign.seas.upenn.edu/index.php/Courses/MEAM520

Questions or concerns? Contact Professor Kuchenbecker at kuchenbe@seas.upenn.edu

Questions or concerns? Contact Professor Kuchenbecker at kuchenbe@seas.upenn.edu

Where is the PUMA?

B2 Towne

B2

Rules for B2

I. No food or drink allowed. Water bottles are okay.
2. Do not touch the wind tunnel.
3. Do not touch the MTS machine.
4. Do not touch the cabinet in the corner.
5. Do not open the windows.
6. Do not turn the lights off when students from other classes are using the other equipment.
7. Be persistent with the card swipe (~ 8 tries?).
8. Feel free to use the CETS computers.
9. Be careful with the robot.

How does the real robot differ from the simulator?

Simulator is kinematic only, but the robot has dynamics: friction, inertia, gravity, backlash, compliance, possible mis-calibration, and torque limits. (electrical dynamics too!)

The robot's joint angle sensors are quantized.
Time can be accelerated or slowed down in the simulator.

The robot can hurt you and itself.
spring rest length

pIazza
＋New Post Q Search or add a post．．．
－FAVORITES
－YESTERIDAY
> project1
> what＇s the reactive speed of puma？The code of our team has passed in pumaservo but when run on the simulation of puma
> Fproject1

Instr Note PLEASE READ：About Joint

11：47PM
i I

Q \＆A
Course Page
Manage Class
Katherine J．Kuchenbecker Note History：

PLEASE READ：About Joint Movement Limitations and Using pumaAngles

Many submissions are making use of pumaAngles to get the current joint angle of the Puma to calculate the total movement necessary to reach a destination．Often times this call to pumaAngles is directly after a call to pumaServo．Also most of these submissions are pushing each joint to move at 0.1 radians per 10 ms ．We don＇t simulate dynamics in the simulator so when you call pumaServo，the movement happens instantly and calling pumaAngles directly after will get you your desired joint angles，but on the real Puma dynamics are alive and kicking．You will need to make some changes to make your light paintings run correctly．

First of all，running the joints at a speed of 0.1 radians per 10 ms is equal to 10 radians per second $/ 573$ degrees per second．Crazy， no？None of the joints can actually respond that quickly．In fact it＇s known that joint 3 is one of the slowest joints with a maximum speed of 80 degrees per second．This means if you call pumaServo to change joint 3 at 573 degrees per second a few things will happen：

1．The other joints will respond faster and your trajectory will not be as you planned．What was a circle in the simulator will now be heavily lopsided and silly looking．
2．The end effector will not be where you wanted it to be and will probably smash into something because joint 3 didn＇t get out of the way fast enough．
3．When you call the last pumaServo to get to a point and then immediately call pumaAngles in preparation for getting to the next point，joint three may still be lagging behind．Thus pumaAngles will give you data for a position you don＇t want and it will be out of date once joint 3 catches up．You＇ll perform difference calculations on that out of date data that is far away from what you commanded it to be and you＇ll get an error about moving further than the 0.1 radian angle limit．

The solution is to slow your joints down to a reasonable speed．Although，depending on the speed，the use of pumaAngles in the way described may still cause problem number 3 to occur．It may be worth looking into other methods of calculating a trajectory such as interpolating enough $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates to guarantee that both end effector velocities and joint velocities will be reasonable．

The 0.1 rad limit on successive commands is a time independent safety limit and thus not a valid limit on velocity．Please do not treat it as such．Overall，when running on the Puma，try to keep all joint velocities around $1 \mathrm{rad} / \mathrm{s}$（about $57 \mathrm{deg} / \mathrm{s}$ ）．This is a velocity that all six joints should be able to run at no problem．

A fix to the simulator will be coming scon to prevent large joint velocities，
＊project1＊MPORTANT

Average Response Time:

Instr Noto PUMA Light Painting Tips
Here are a few tips for designing your light
painting given the constraints of the real
painting given the constraints of the real

Tue
2 目 Tue
Our team is currently trying to script our 30 painting．However，we are still unsure about our IK script．Will we get re
Imatlab Aproject1 robot．－The default configurat
Filter: All

Questions?

Homework 4 due Friday II/2

Homework 4:

Velocity Kinematics and Jacobians
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.

October 23, 2012

This assignment is due on Friday, November 2 (updated), by 5:00 p.m. sharp. You should aim to turn the paper part in during class the day before. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. Late submissions will be accepted until 5:00 p.m. on Monday, November 5, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.

You may talk with other students about this assignment, ask the teaching team questions, use a calculato and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual

Written Problems (60 points)

This entire assignment is written and consists of two significantly adapted problems from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications
and instructions on both questions. Write in pencil, show your work clearly, box your answers, and staple your pages together.

1. Adapted SHV 4-20, page 160 - Three-link Cylindrical Manipulator (30 points)

The book works out the DH parameters and the transformation matrix T_{3}^{0} for this robot on pages 85 and 86 ; you are welcome to use these results directly without rederiving them
(a) Use the position of the end-effector in the base frame to calculate the 3×3 linear velocity Jacobian J_{v} for the three-link cylindrical manipulator of Figure 3.7 on page 85
(b) Use the positions of the origins o_{i} and the orientations of the z-axes z_{i} to calculate the 3×3 linear velocity Jacobian J_{v} for the same robot. You should get the same answer as before.
(c) Find the 3×3 angular velocity Jacobian J_{ω} for the same robot.
(d) Find this robot's 6×3 Jacobian J.
(e) Imagine this robot is at $\theta_{1}=\pi / 2 \mathrm{rad}, d_{2}=0.2 \mathrm{~m}$, and $d_{3}=0.3 \mathrm{~m}$, and its joint velocities are $\dot{\theta}_{1}=0.1 \mathrm{rad} / \mathrm{s}, \dot{d}_{2}=0.25 \mathrm{~m} / \mathrm{s}$, and $d_{3}=-0.05 \mathrm{~m} / \mathrm{s}$. What is v_{3}^{0}, the linear velocity vector of the end-effector with respect to the base frame, expressed in the base frame? Make sure to provide units with your answer.
(f) For the same situation, what is ω_{3}^{0}, the angular velocity vector of the end-effector with respect to the base frame, expressed in the base frame? Make sure to provide units with your answer
(g) Use your answers from above to derive the singular configurations of the arm, if any. Here we are concerned with the linear velocity of the end-effector, not its angular velocity. Be persistent with the calculations; they should reduce to something nice.
(h) Sketch the cylindrical manipulator in each singular configuration that you found, and explain what effect the singularity has on the robot's motion in that configuration.

Adapted SHV 4-18, page 160 - Three-link Spherical Manipulator (30 points) The book does not seem to work out the forward kinematics for this robot anywhere. Please use the diagram on the left side of Figure 1.12 on page 15 in SHV to define the positive joint directions and the zero configuration for the robot. If we additionally choose the x_{0} axis to point in the direction the robot arm points in the zero configuration, you can calculate that the tip of the spherical manipulator is at $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}=\left[\begin{array}{lll}c_{1} c_{2} d_{3} & s_{1} c_{2} d_{3} & d_{1}-s_{2} d_{3}\end{array}\right]^{T}$. In this expression θ_{1}, θ_{2}, and d_{3} are the joint variables; s_{i} is $\sin \theta_{i}$ and c_{i} is $\cos \theta_{i}$; and d_{1} is a constant.
(a) Calculate the 3×3 linear velocity Jacobian J_{v} for the spherical manipulator with no offsets shown in the left side of Figure 1.12 on page 15 of SHV. You may use any method you choose.
(b) Find the 3×3 angular velocity Jacobian J_{ω} for the same robot.
(c) Find this robot's 6×3 Jacobian J.
(d) Imagine this robot is at $\theta_{1}=\pi / 4 \mathrm{rad}, \theta_{2}=0 \mathrm{rad}$, and $d_{3}=1 \mathrm{~m}$. What is ω_{3}^{0}, the angular velocity vector of the end-effector with respect to the base frame, expressed in the base frame, as a function of the joint velocities $\dot{\theta}_{1}, \dot{\theta}_{2}$, and \dot{d}_{3} ? Make sure to provide units for any coefficients in these equations, if needed.
(e) For the same configuration described in the previous question, what is v_{3}^{0}, the linear velocity vector of the end-effector with respect to the base frame, expressed in the base frame, as a function of the joint velocities $\dot{\theta}_{1}, \dot{\theta}_{2}$, and \dot{d}_{3} ? Provide units for any coefficients in these equations, if needed.
(f) What instantaneous joint velocities should I choose if the robot is in the configuration described in the previous questions and I want its tip to move at $v_{3}^{0}=[0 \mathrm{~m} / \mathrm{s} 0.5 \mathrm{~m} / \mathrm{s} 0.1 \mathrm{~m} / \mathrm{s}]^{T}$? Make sure to provide units with your answe
(g) Use your answers from above to derive the singular configurations of the arm, if any. Here we are concerned with the linear velocity of the end-effector, not its angular velocity. Be persistent with the calculations; they should reduce to something nice
(h) Sketch the cylindrical manipulator in each singular configuration that you found, and explain what effect the singularity has on the robot's motion in that configuration.
(i) Would the singular configuration sketches you just drew be any different if we had chosen different positive directions for the joint coordinates? What if we had selected a different zero configuration for this robot? Explain.
3. Optional Extra Credit - Visualizing the Linear Velocity Jacobian (unknown points)

If you have time and interest, feel free to try this optional extra-credit problem. Modify your solution for the PUMA robot animation in Homework 3 (puma_robot_yourpennkey.m) in the following ways:

- Rename the file jacobian_yourpennkey.m
- Eliminate the spherical wrist, so that end-effector is at the origin of frame 3 (the wrist center).
- Remove the offsets by setting b and d to zero. This should give you an articulated manipulator
- Change the zero configuration as follows: when all three angles are zero, the arm should be horizontal and pointing in the direction of the positive x_{0} axis. Although this is not what is shown in Figure 4.5 on page 145 in SHV, I think this is the zero configuration they used.
- Use the expression for J_{11} on page 144 in SHV to augment the visualization of the robot with three lines that go through the tip of the robot and show the direction in which the tip will move if you have only one non-zero joint velocity. Make the line for $\dot{\theta}_{1}$ red, the line for $\dot{\theta}_{2}$ green, and the line for $\dot{\theta}_{3}$ blue. Feel free to adjust other plotting parameters as needed.
- Check your solution with the provided motion modes, and feel free to create a new motion mode that showcases the Jacobian augmentation you added.
Submit your code as an attachment to an email to meam520@seas.upenn.edu with the subject Jacobian Extra Credit: Your Name, replacing Your Name with your name.
 Phttps://piazza.com/class\#fall2012/meam520/93
+ Now Post Q Search or add a post..
various external factors that have taken
time away from working on project 1 . We w
*instructor-question \#project1

- THIS Week

Instr Note Pcoded IK Test Function

Concerned about your team's inverse
kinematics function? You are welcome to try
running it through a pcoded test functio
\#ik \#instructor-note \#project1 Apuma

IK still not working...

Our team is currently trying to script our 3D i painting. However, we are still unsure about
 our IK script. Will we get re
*matlab *project1

Instr Note PUMA Light Painting Tips

Here are a few tips for designing your light
painting given the constraints of the rea
robot. - The default configurat
sinstructor-note Eproject1 Epuma
Performances by Carbon Dance Theatr...
As presented in class last Thursday, two III students in our class (Stella Latscha and Dean Wilhelmi) have been working with Afunstuff \#instructor-poll

Instr Note Beautiful Light Paintings Fea...
Check out this article on Andrew Hall's
beautiful light paintings:
http://www.wired.com/rawfile/2012/10/a.
\#funstuff \#instructor-note \#project1
Instr Note Current PUMA Simulator Ve... The current version of the PUMA simulator is V3. You can download the simulator here: http://medesign.seas.upenn.edu/up \#instructor-note \#project1 \#puma

LED End-Effector and Recordings

Do you have any estimate on how close light points can be without interfering
other? Are we allowed to do mul

Views: 4 0
Filter:
All

Q \& A Course Page Manage Class
$\Perp \quad 44$ Ka Katherine J. Kuchenbecker

poll

Performances by Carbon Dance Theatre - Dance With Robots

As presented in class last Thursday, two students in our class (Stella Latscha and Dean Wilhelmi) have been working with Mark Yim and Carbon Dance Theatre to incorporate robots into a dance performance taking place in Center City Philadelphia this week.

Carbon Dance Theatre presents Science Per Forms
http://www.carbondancetheatre.org/W!projects
Christ Church Neighborhood House
20 North American Street, Philadelphia
(Off of Market Street and 2nd Avenue)
Tickets are \$15 for students, $\$ 25$ general
Interested in going? We should go together. Vote for your favorite showtimes. sfunstuff
\square Thursday, October 25, at 7:30pm
\square Saturday, October 27, at 7:30pm
\square Sunday, October 28, at 2:30pm
Your name wil be visible to everyone Submit
cait save to favorites 0 good poll 0 more - 2 days ago by Katherine J. Ku...

This poll is now closed
A total of $\mathbf{3}$ vote(s) in $\mathbf{6 4}$ hours

Thursday, October 25, at 7:30pm Show Voters
Saturday, October 27, at 7:30pm Show Voters
Sunday, October 28, at 2:30pm Show Voters

Average Response Time:

Special Mentions:
Online Now | This Week:

$$
\text { Katherine J. Kuchenbecker answered Extension on Project } 1 \text { ? in } 3 \text { min. } 13 \text { hours ago }
$$

Confirmed Midterm Date
 Thursday, November 8, in class

Covers everything on Homework I through 4 plus Project I

