MEAM 520

More Velocity Kinematics

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

CarbonDanceTheatre
ABOUT

October 25, 27 \& 28, 2012 Neighborhood House Theater, Christ Church Philadelphia, PA
$\$ 25$ general admission $\$ 20$ seniors $\$ 15$ students and dancepass holders

Showtimes
 Thursday 10/25 @ 7:30PM Saturday 10/27 @ 7:30PM Sunday $10 / 28$ @ 2:30PM

for tickets click here
More information on Carbon Dance Thearre's

CARBON DANCE THEATRE creates projects that empower performers and entertain oudiences by creating work that is rooted in classical ballet and infused with the colloborative process of theatre.
 meredithecarondancetheatrecom | 2920 Combridge Street Philadelphia, PA 19130 | grophic design: tori lawrence I wwwtorlawrencecom

$\theta 00$	p01-ik - meam520@seas.upenn.edu (40 messages)				0
	(1)	$\square>$		Q	
Mailboxes	P - From	Subject	4 Date Received	6	
- \% inbox	qiong@seas.upenn.edu	ik	Oct 16, 2012	5:01 PM \& 1 item	
-5. kuchenbe@seas.upen...	\rightarrow shengi@seas.upenn.edu	Project 1: Team04	Oct 16, 2012	1:14 AM \& 1 item	
kuchenbe@seas.upen...	\% sheng@@seas.upenn.edu	Project 1: Team04 (Resubmit)	Today	4:44 AM \& 1 item	
meam520@seas.	jonghak@seas.upenn.edu	PUMA IK : team19	Oct 16, 2012	4:58 PM \& 6 items	
$\square \mathrm{hw02}$	Dalton Banks	PUMA IK: Team 00	Oct 16, 2012	5:00 PM \& 2 items	
$\square \mathrm{hwO}$	yuluo@seas.upenn.edu	PUMA IK: Team 01	Oct 16, 2012	2:13 PM \& 5 items	
$\square \mathrm{p} 01-\mathrm{ik}$	Thomas Koletschka	PUMA IK: Team 02	Oct 16, 2012	4:51 PM \& 1 item	
$\square \mathrm{hw01}$	Jonathan Balloch	PUMA IK: Team 05	Oct 16, 2012	5:02 PM \& 9 items	
$\begin{aligned} & >8 \text { Sent } \\ & >=\text { Trash } \\ & >8 \text { Junk } \end{aligned}$	chao qu	PUMA IK: Team 06	Oct 16, 2012	3:10 PM \& 15 items	
	chao qu	PUMA IK: Team 06	Oct 16, 2012	8:33 PM \& 16 items	
	amirand@seas.upenn.edu	PUMA IK: Team 07	Oct 16, 2012	4:59 PM \& 5 items	
	Alex Sher	PUMA IK: Team 08	Oct 16, 2012	$4: 25$ PM \& 4 items	
- RSS	\rightarrow Zhongqi Yue	PUMA IK: Team 08 Resubmission	Oct 16, 2012	5:21 PM of 4 items	
	Vivian Chu	PUMA IK: Team 09	Oct 16, 2012	4:58 PM \&f 8 items	
- ON MY MAC	Michael Lo	PUMA IK: Team 10	Oct 16, 2012	3:14 PM \& 1 item	
- KUCHENBE@SEAS.UPENN.EDU	James Yang	PUMA IK: Team 12	Oct 16, 2012	3:24 PM \& 1 item	
	Shaojun ZHU	PUMA IK: Team 13	Oct 16, 2012	5:07 PM of 4 items	
	Jesse E. Morzel	PUMA IK: Team 14	Oct 16, 2012	4:58 PM \& 4 items	
	Collin Boots	PUMA IK: Team 15	Oct 16, 2012	4:03 PM \& 1 item	
	Dieter Neckermann	PUMA IK: Team 16	Oct 16, 2012	4:10 PM of 4 items	
	Sawyer Brooks	PUMA IK: Team 17	Oct 16, 2012	5:03 PM \& 6 items	
	siyuanz@seas.upenn.edu	PUMA IK: Team 20	Oct 16, 2012	12:23 PM \& 6 items	
	Romaine Waite	PUMA IK: Team 21	Oct 16, 2012	4:58 PM \& 1 item	
	Tyler Barkin	PUMA IK: Team 21	Oct 16, 2012	6:50 PM \& 1 item	
	Hardik Gupta	PUMA IK: Team 22	Oct 16, 2012	4:39 PM \& 4 items	
	Alex Jose	PUMA IK: Team 23	Oct 16, 2012	4:21 PM \& 9 items	
	Hang	PUMA IK: Team 24	Oct 16, 2012	4:41 PM \& 7 items	
	Annie Mroz	PUMA IK: Team 25	Oct 16, 2012	4:31 PM \& 4 items	
	Takashi Furuya	PUMA IK: Team 26	Oct 16, 2012	3:45 PM \& 5 items	
	吴进	PUMA IK: Team 27	Oct 16, 2012	2:29 PM \& 1 item	
	Charlie Xu	PUMA IK: Team 28	Oct 16, 2012	12:11 AM \& 4 items	
	qiangeng@seas.upenn.edu	PUMA IK: Team 28	Oct 16, 2012	3:23 PM \&f 4 items	
	Brian C. Lee	PUMA IK: Team 29	Oct 16, 2012	4:44 PM \& 3 items	
	Brian C. Lee	PUMA IK: Team 29	Oct 16, 2012	4:52 PM \& 3 items	
	golas@seas.upenn.edu	PUMA IK: Team 30	Oct 16, 2012	4:28 PM of 3 items	
	Robert Parajon	PUMA IK: Team 31	Oct 16, 2012	10:01 AM \&f 4 items	
	Gabrielle Merritt	PUMA IK: Team 32	Oct 16, 2012	4:52 PM \& 3 items	
	Fiona Strain	PUMA IK: Team 33	Oct 16, 2012	2:42 PM \&f 4 items	
	Leslie Callaghan	PUMA IK: Team 34	Oct 16, 2012	3:53 PM \&f 4 items	
	tianyud@seas.upenn.edu	Fwd: test_puma_ik_team11 (Latest code)	Oct 14, 2012	8:24 PM \& 4 items	

Project I : PUMA Light Painting

GENERAL
Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM $410 / 510$
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANTOM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE
SolidWorks
Matlab
NX

Nastran
Fluent, Gambit
SolidCAM
Eagle

OTHER

MEAM. Design - MEAM 520 - PUMA Light Painting: Simulation
Now that you did your inverse kinematics solution, it's time to do light painting. This assignment is due by 5:00 p.m. on Thursday, October 25. Your team must submit this assignment and get it to work correctly before you will be allowed to do the next part of the project (working with the robot). Submissions after the deadline will be penalized, but not as harshly as for individual homework assignments.
Your task is to write a MATLAB program that moves the PUMA's LED around in space to create a lovely light painting (long exposure image).
You should use our PUMA simulator (v1) to test your light painting code. As shown at right, it creates an animation of the PUMA and leaves colored markers in the air so you can see how your creation looks. After you download the simulator, run demo.m to see how it works. Read pumasim_manual_v1.pdf to learn more about the simulator's interface. Please post on Piazza if you are confused about any aspect of the simulator or if you find any bugs.

Submission

1. Start an email to meam520@seas.upenn.edu
2. Make the subject PUMA Simulation: Team 00, replacing 00 with your team number.
3. Attach all of your correctly named MATLAB files to the email. It should be

puma_light_painting_teamXX .m, where XX is your team number, plus any additional files you may have created, also named according to this convention.
4. In the body of the email, explain the status of your submission. If you are submitting a new version of your IK with this assignment, state that in the email.
5. Send the email.
6. Wait for a response from the teaching team about whether your code is ready to run on the robot.

RUNNING THE PUMA

The basic work flow when using the PUMA 260 arm is

1. Make sure the Emergency Stop (E-stop) button is engaged (pressed down).
2. Call pumaStart('Hardware', 'on', 'Delay', 10), where the number following delay is the minimum allowable time, in milliseconds, between calls to pumaServo. This may be set to any value above 0.5 ms . This will display a warning that the PUMA will return to the home position. Ensure that the workspace is clear and manually move the PUMA closer to the home position if you think it may hit the table or an object.
3. Type 'y' or 'yes' then hit Enter to continue.
4. Release the E-stop by pulling up on the button, at which time the PUMA will return to the home position.
5. In a separate MATLAB process, call startFrameBuffer to begin capturing video from the webcam.
6. Make a light painting, using pumaServo to command the robot to move. Remember to call pumaLEDOn to enable the LED and use pumaLEDSet to select the color.
7. Call stopFrameBuffer to finish capturing video.
8. Return the PUMA to the home position, if possible.
9. Call pumaStop to disable the controller.
10. Engage the E-stop by pressing the button down.
11. Use makeVideoAndImage to create long-exposure picture and video. Optionally, you may wish to save the image files to a different location using saveImagesToFolder before starting a new video.

There are several other things to keep in mind:

- Do $\underline{N O T}$ use the clear all command once the PUMA has been initialized before calling pumaStop, otherwise MATLAB will crash.
- Test the video capture before running your whole light painting.

Confirmed Midterm Date Thursday, November 8, in class

~ email KJK if you have a severe conflict ~

Velocity

 Knematics

Slides created by Jonathan Fiene

How do the velocities of the joints affect the linear and angular velocity of the end-effector?

These quantities are related by the Jacobian, a matrix that generalizes the notion of an ordinary derivative of a scalar function.

Jacobians are useful for planning and executing smooth trajectories, determining singular configurations, executing coordinated anthropomorphic motion, deriving dynamic equations of motion, and transforming forces and torques from the end-effector to the manipulator joints.
explore how changes in joint values affect the end-effector movement
could have \mathbf{N} joints, but only six end-effector velocity terms (xyzpts)

The Jacobian matrix lets us calculate how joint velocities translate into end-effector velocities (depends on configuration)
look at it in two parts - position and orientation

$$
v_{n}^{0}=J_{v} \dot{q}
$$

$$
\omega_{n}^{0}=J_{\omega} \dot{q}
$$

How do we calculate the position Jacobian?

$$
\begin{aligned}
& \dot{\mathbf{p}}=\mathbf{J}_{p}(q) \dot{\mathbf{q}} \\
& \begin{array}{c|c}
\uparrow \\
\begin{array}{c}
\text { endpoint } \\
\text { velocity }
\end{array} & \begin{array}{c}
\text { joint } \\
\text { velocity }
\end{array}
\end{array} \\
& \text { Jacobian } \\
& \text { matrix } \\
& \left.\mathbf{J}_{p}=\left[\begin{array}{cccc}
\frac{\delta x}{\delta q_{1}} & \frac{\delta x}{\delta q_{2}} & \cdots & \frac{\delta x}{\delta q_{n}} \\
\frac{\delta y}{\delta q_{1}} & \frac{\delta y}{\delta q_{2}} & \cdots & \frac{\delta y}{\delta q_{n}} \\
\frac{\delta z}{\delta q_{1}} & \frac{\delta z}{\delta q_{2}} & \cdots & \frac{\delta z}{\delta q_{n}}
\end{array}\right] \quad \begin{array}{c}
\text { Prismatic } \\
J_{v_{i}}=z_{i-1} \\
\text { Revolute } \\
\text { R }
\end{array}\right] \begin{array}{c}
J_{v_{i}}=z_{i-1} \times\left(o_{n}-o_{i-1}\right)
\end{array}
\end{aligned}
$$

$$
v_{n}^{0}=J_{v} \dot{q}
$$

What joint velocities should I choose to cause a desired end-effector velocity? (inverse velocity kinematics)

$$
\dot{q}=J_{v}^{-1} v_{n}^{0}
$$

This works only when the Jacobian is square and invertible (non-singular).

SHV 4.II explains what to do when the Jacobian is not square: rank test (v is in range of J)
use J ${ }^{+}$(right pseudoinverse of J)
when the robot has extra joints, there are many solutions

Singularities are points in the configuration space where infinitesimal motion in a certain direction is not possible and the manipulator loses one or more degrees of freedom

Mathematically, singularities exist at any point in the workspace where the Jacobian matrix loses rank.
a matrix is singular if and only if its determinant is zero:

$$
\operatorname{det}(\mathbf{J})=0
$$

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12}
\end{array}\right] \\
\operatorname{det}(\mathbf{J})=? \\
\operatorname{det}(\mathbf{J})=a_{1} a_{2}\left(c_{1} s_{12}-s_{1} c_{12}\right)
\end{gathered}
$$

$$
\text { When does } \operatorname{det}(\mathbf{J})=0 ?
$$

$$
\operatorname{det}(\mathbf{J})=0 \text { when } \theta_{2}=0
$$

Is that the only time?
No $\ldots \quad \operatorname{det}(\mathbf{J})=0$ when $\theta_{2}=\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots$
Any other times? $\quad \operatorname{det}(\mathbf{J})=0$ when $a_{1}=0$ or $a_{2}=0$

$$
\text { For } \quad \theta_{2}=0
$$

The Jacobian collapses to have linearly dependent rows

$$
\mathbf{J}_{\theta_{2}=0}=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{1} & -a_{2} s_{1} \\
a_{1} c_{1}+a_{2} c_{1} & a_{2} c_{1}
\end{array}\right]
$$

This means that actuating either joint causes

$$
(x, y)
$$

 motion in the same direction

Questions?

explore how changes in joint values affect the end-effector movement
could have \mathbf{N} joints, but only six end-effector velocity terms (xyzpts)

The Jacobian matrix lets us calculate how joint velocities translate into end-effector velocities (depends on configuration)
look at it in two parts - position and orientation

$$
v_{n}^{0}=J_{v} \dot{q}
$$

$$
\omega_{n}^{0}=J_{\omega} \dot{q}
$$

How do we calculate the orientation Jacobian?

And now, angular velocity

$\omega=\mathbf{J}_{\omega}(q) \dot{\mathbf{q}}$	
final frame	joint
angular	velocities
velocity	

$$
\omega_{i, j}^{k}
$$

this is the angular velocity of frame \mathbf{j} with respect to frame \mathbf{i}, expressed in frame \mathbf{k}

SHV 4.I gives a good explanation of angular velocity for fixed-axis rotation. SHV 4.2-4.5 go into greater detail.

$$
\begin{aligned}
\omega_{0,1}^{0} & =0 \hat{x}_{0}+0 \hat{y}_{0}+\dot{\theta}_{1} \hat{z}_{0} \\
\omega_{1,2}^{1} & =0 \hat{x}_{1}+0 \hat{y}_{1}+\dot{\theta}_{2} \hat{z}_{1} \\
\omega_{1,2}^{0} & =\mathbf{R}_{1}^{0} \omega_{1,2}^{1} \\
\omega_{0,2}^{0} & =\omega_{0,1}^{0}+\mathbf{R}_{1}^{0} \omega_{1,2}^{1} \\
& =0 \hat{x}_{0}+0 \hat{y}_{0}+\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \hat{z}_{0} \\
\omega_{0, n}^{0} & =\sum_{i=1}^{n} \mathbf{R}_{i-1}^{0} \omega_{i-1, i}^{i-1} \\
\omega_{0, n}^{0} & =\sum_{i=1}^{n}\left(\mathbf{R}_{i-1}^{0} \hat{\mathbf{z}}\right) \dot{\theta}_{i}
\end{aligned}
$$

And now, for that Jacobian!

$$
\left.\begin{array}{l}
\omega_{0, n}^{0}=\sum_{i=1}^{n} \rho_{i}\left(\mathbf{R}_{i-1}^{0} \hat{z}\right) \dot{\theta}_{i}
\end{array} \rho_{i}=\begin{array}{c}
\text { ofor rorismatic } \\
\text { tor revolute }
\end{array}\right]
$$

The Jacobian is easily constructed from the manipulator's forward kinematics.

What do you need from the forward kinematics?

4.6.3 Combining the Linear and Angular Velocity Jacobians

 As we have seen in the preceding section, the upper half of the Jacobian J_{v} is given as$$
\begin{equation*}
J_{v}=\left[J_{v_{1}} \cdots J_{v_{n}}\right] \tag{4.56}
\end{equation*}
$$

in which the $i^{\text {th }}$ column $J_{v_{i}}$ is

$$
J_{v_{i}}=\left\{\begin{array}{cl}
z_{i-1} \times\left(o_{n}-o_{i-1}\right) & \text { for revolute joint } i \tag{4.57}\\
z_{i-1} & \text { for prismatic joint } i
\end{array}\right.
$$

The lower half of the Jacobian is given as

$$
\begin{equation*}
J_{\omega}=\left[J_{\omega_{1}} \cdots J_{\omega_{n}}\right] \tag{4.58}
\end{equation*}
$$

in which the $i^{\text {th }}$ column $J_{\omega_{i}}$ is

$$
J_{\omega_{i}}=\left\{\begin{array}{cl}
z_{i-1} & \text { for revolute joint } i \tag{4.59}\\
0 & \text { for prismatic joint } i
\end{array}\right.
$$

Singularities are points in the configuration space where infinitesimal motion in a certain direction is not possible and the manipulator loses one or more degrees of freedom

Mathematically, singularities exist at any point in the workspace where the Jacobian matrix loses rank.
a matrix is singular if and only if its determinant is zero:

$$
\operatorname{det}(\mathbf{J})=0
$$

$$
\xi=J(q) \dot{q}
$$

$$
(n \times I) \text { joint velocities }
$$

$$
(6 \times n) \text { Jacobian }
$$

$$
\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right]=\left[\begin{array}{l}
J_{v} \\
J_{\omega}
\end{array}\right] \dot{q}
$$

For a 6-DOF manipulator with a spherical wrist, we can decouple the determination of singular configurations into two simpler problems.

$$
J=\left[J_{\mathrm{arm}} \mid J_{\mathrm{wrist}}\right]
$$

(the book calls this $J=\left[J_{P} \mid J_{O}\right]$)

$$
J=\left[J_{\text {arm }} \mid J_{\text {wrist }}\right]=\left[\left.\frac{J_{11}}{J_{21}} \right\rvert\, \frac{J_{12}}{J_{22}}\right]
$$

$$
J_{\text {wrist }}=\left[\begin{array}{ccc}
z_{3} \times\left(o_{6}-o_{3}\right) & z_{4} \times\left(o_{6}-o_{4}\right) & z_{5} \times\left(o_{6}-o_{5}\right) \\
z_{3} & z_{4} & z_{5}
\end{array}\right]
$$

if we choose $o_{4}=o_{5}=o_{6}$

$$
J_{\text {wrist }}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
z_{3} & z_{4} & z_{5}
\end{array}\right]
$$

$$
J=\left[\left.\frac{J_{11}}{J_{21}} \right\rvert\, \frac{0}{J_{22}}\right] \quad \operatorname{det}(J)=\operatorname{det}\left(J_{11}\right) \operatorname{det}\left(J_{22}\right)
$$

$$
\operatorname{det}(J)=\operatorname{det}\left(J_{11}\right) \operatorname{det}\left(J_{22}\right)
$$

$$
J_{22}=\left[\begin{array}{lll}
z_{3} & z_{4} & z_{5}
\end{array}\right]
$$

Singular when any two wrist axes align

$z_{3} \perp z_{4}$
$z_{4} \perp z_{5}$
z_{3} can become $\| z_{5}$
$\theta_{5}=0, \pi$ are singular configurations

For a specific configuration, the Jacobian scales the input (joint velocities) to the output (body velocity)

$$
\xi=J(q) \dot{q}
$$

If you put in a joint velocity vector with unit norm, you can calculate in which direction and how fast the robot will translate and rotate.

If the Jacobian is full rank, you can calculate the manipulability ellipsoid.

$$
\begin{gathered}
\text { choose } \dot{q}=J^{+} \xi \\
\|\dot{q}\|^{2}=\xi^{T}\left(J J^{T}\right)^{-1} \xi
\end{gathered}
$$

If not redundant, manipulability

$$
\mu=|\operatorname{det}(J)|
$$

What does the manipulability ellipsoid look like for the planar RR robot?

$$
\mu=|\operatorname{det}(J)|=a_{1} a_{2}\left|\sin \left(\theta_{2}\right)\right|
$$

Can be used to tell you where to perform certain tasks.

Also useful for deciding how to design a manipulator.

Soon I will release Homework 4, an individual assignment on Jacobians

Not sure when it will be due...

Homework 2 and 3 graded

