MEAM 520 Velocity Kinematics

Katherine J. Kuchenbecker, Ph.D.

General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Lecture II: October 16, 2012

00

.

చ

MEAM.Design : MEAM520-12C-P01-IK

+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520-12C-P01-IK

Reader 🖒 🔍 Google

MEAM.Design : MEAM520-12C-P01-IK

GENERAL	MEAM.Design - MEAM 520 - PUMA Light Painting: IK	
Hall of Fame	New that you have your team, it's time to get to work on project 1. This	
Laboratories	Now that you have your team, it's time to get to work on project 1. This assignment is due by 5:00 p.m. on Tuesday, October 16. Your team	
Contact Info	must submit this assignment and get it to work correctly before you will be	v ₁ ⁶ = [0 in. 0.125 in. 1.1
COURSES	allowed to do the next part of the project. Submissions after the deadline will be penalized, but not as harshly as for individual homework	LED LED LED
MEAM 101	assignments.	
MEAM 201	The final goal of this project is to create a beautiful light painting by taking	
MEAM 410/510	a long-exposure video and photo of the PUMA moving an LED around in	
MEAM 520	the air. As an intermediate step toward that goal, you and your teammates	
IPD 501	must solve the inverse kinematics of the robot, so that you can later safely	
SAAST	move its end-effector wherever is needed for your artwork.	12.0 :
	LED Location	a = 13.0 in.
GUIDES	The center of the LED is located at approximately [0" 0.125" 1.25"] in frame 6. The position and orientation of frames 0 and 6 are specified in	b = 3.5 in.
Materials	frame 6. The position and orientation of frames 0 and 6 are specified in the image at right, as are the positive directions for all the joints. These	c = 8.0 in.
Laser Cutting	conventions match what was specified in Homework 3.	
3D Printing	Joint Angle Limits	d = 3.0 in.
Machining	θ1 (waist) range = 290 deg , lowerlimit = -180 deg , upperlimit = 110 deg	e = 8.0 in.
ProtoTRAK	θ2 (shoulder) range = 315 deg , lowerlimit = -75 deg , upperlimit = 240	-
PUMA 260	deg	f = 2.5 in.
PHANToM	63 (elbow) range = 295 deg , lowerlimit = -235 deg , upperlimit = 60 deg	
BeagleBoard	04 (wrist) range = 620 deg , lowerlimit = -580 deg , upperlimit = 40 deg 05 (bend) range = 230 deg , lowerlimit = -120 deg , upperlimit = 110 deg	
MAEVARM	θ6 (flange) range = 510 deg , lowerlimit = -215 deg , upperlimit = 295 deg	
Phidget	PUMA 260 Simulator	
Tap Chart	At some point soon, we will publish a full forward kinematics simulator for	
	the PUMA 260 robot. It will have the same software interface as our real	
SOFTWARE	PUMA robot. You may find it useful to use the simulator to verify your	
SolidWorks	forward kinematics and inverse kinematics solutions. More details will be	h [/] ← C
Go to "http://medes	ign.seas.upenn.edu/index.php/Courses.MEAM520-12C-P01-IK"	

View Logout Edit Upload

0

0) 🔿 🛛 Ec	ditor - /Users/kuchenbe/Documents/teaching/meam 520/projects/01 light painting/01 ik/puma_fk_tea	am00.m	
File	Edit Text	Go Cell Tools Debug Desktop Window Help		
×	🗂 🖉 e 🕫	😂 🖩 省 ヴ や 😓 📨 - 🗛 🗢 🖗 🕨 - 🖥 🗐 単 単 単 個	\$ fx 🗆 🕻	
*	Çi – 1.0	$+$ \div 1.1 \times $\%$ $\%$ 0		
1	🛛 🛱 funct	ion T06 = puma_fk_team00(th1, th2, th3, th4, th5, th6)		
2	88 PU	MA_FK_TEAM00 Calculates the forward kinematics for the PUM	A 260.	
3	8			
4		s Matlab file provides the starter code for the PUMA 260 for		
5		mematics function of project 1 in MEAM 520 at the University		
6		<pre>% Pennsylvania. The original was written by Professor Katherine J.</pre>		
7		chenbecker in October of 2012. Students will work in teams mo		
8 9	t coo	le to create their own script. Post questions on the class's	Plazza	
10	8 101			
11	8 The	six inputs (thl th6) are the PUMA's current joint angle	es in	
12		lians, specified according to the order and sign conventions		
13		the documentation.		
14	8			
15	% The	e one output is the homogeneous transformation representing t	the pose of	
16	% fra	me 6 in frame 0. The position part of this transformation :	is in	
17	% inc	hes.		
18	8			
19		ease change the name of this file and the function declaration		
20		st line above to include your team number rather than 00.		
21	* you	ir neam number and the full names of your three team members	Derow.	
22 23		m Number:	_	
24		m Members:		
25	0 100			
26				
27	88 R0	BOT PARAMETERS		
28	% Thi	s problem is about the PUMA 260 robot, a 6-DOF manipulator.		
29				
30		ine the robot's measurements. These correspond to the diag	ram in the	
31		nework and are constant.		
32		3.0; % inches		
33		3.5; % inches	¥ .	
34		8.0; % inches	- -	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>				
		puma_fk_team00	Ln 28 Col 18	
_			1	

0	00	Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/01 light painting/01 ik/puma_ik_team00.m
File	Edi	it Text Go Cell Tools Debug Desktop Window Help
×	7	× { 1 ⊂ ■ # ™ 2 ″ ~ N ⊂ 3 ⊡ + A ← → A ← → A ← ■ 1 ™ Ⅲ #→ A ← □ ■
*	Ç	$-1.0 + \div 1.1 \times \% \% 0$
1	1	<pre>function [th1 th2 th3 th4 th5 th6] = puma_ik_team00(x, y, z, phi, theta, psi</pre>
	2	%% PUMA IK TEAM00 Calculates the full inverse kinematics for the PUMA 260.
3	3	8
4	4	% This Matlab file provides the starter code for the PUMA 260 inverse
5	5	<pre>% kinematics function of project 1 in MEAM 520 at the University of</pre>
	5	% Pennsylvania. The original was written by Professor Katherine J.
	7	% Kuchenbecker in October of 2012. Students will work in teams modify this
	В	<pre>% code to create their own script. Post questions on the class's Piazza</pre>
	9	% forum.
10		6 The first three input superior (a. a. a) and the desired secondinates (
11		% The first three input arguments (x, y, z) are the desired coordinates of the PUWA's ord offector tip in inches, specified in the base frame. The
12		<pre>% the PUMA's end-effector tip in inches, specified in the base frame. The % origin of the base frame is where the first joint axis (waist) intersects</pre>
14		<pre>% the table. The z0 axis points up, and the x0 axis points out away from</pre>
15		<pre>% the robot, perpendicular to the front edge of the table. These arguments</pre>
16		<pre>% are mandatory.</pre>
17		*
18		% The fourth through sixth input arguments (phi, theta, psi) represent the
19		<pre>% desired orientation of the PUMA's end-effector in the base frame using</pre>
20		% ZYZ Euler angles in radians. These arguments are mandatory.
21		8
22	2	<pre>% The seventh through twelfth input arguments (thlnow th6now) are the</pre>
23	3	<pre>% current joint angles of the PUMA. These arguments are optional, but you</pre>
24	4	% must supply all of them if you supply any of them. Passing in the
25		% robot's current joint angles enables this function to find an IK solution
26		% close to the robot's current configuration, to avoid large jumps in the
27		% robot's movement. If these values are not passed in, the function may
28		<pre>% select from the possible solutions in any manner.</pre>
29		
30		<pre>% The six outputs (th1 th6) are the joint angles needed to place the % DUWD's and offector at the desired position and in the desired</pre>
31		<pre>% PUMA's end-effector at the desired position and in the desired % orientation. These joint angles are specified in radians according to the</pre>
32		<pre>% orientation. These joint angles are specified in radians according to the % order and sign conventions described in the documentation. If this</pre>
34		<pre>% function cannot find a solution to the inverse kinematics problem, it</pre>
IE	-	• Function cannot find a solution to the inverse kinematics problem, it
puma_fk_team00.m puma_ik_team00.m test_puma_ik_team00.m		
		puma_ik_team00 Ln 20 Col 31

0	00		Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/01 light painting/01 ik/test_puma_ik_team00.m
File	Ed	it T	ext Go Cell Tools Debug Desktop Window Help
×	7	N 00000	🚹 😂 📓 🔏 🐂 🛍 ୬ ୯ 🍇 📨 - 🛤 🗢 🗰 🎉 🖻 - 🗟 🗶 🖷 👘 🗊 🕼 📾 🥌 🍂 🚺 📑
*	Ç	-	1.0 + \div 1.1 × $\%_{+}^{*}$ $\%_{-}^{*}$ 0.
	1	8	% TEST_PUMA_IK_TEAM00 Tests the full inverse kinematics for the PUMA 260. 🌄 🔤
	2	8	
	3		This Matlab file provides the starter code for the PUMA 260 inverse
	4		kinematics testing script of project 1 in MEAM 520 at the University of
	5		Pennsylvania. The original was written by Professor Katherine J.
	6		Kuchenbecker in October of 2012. Students will work in teams modify this
	7		code to create their own script. Post questions on the class's Piazza forum.
	B 9	6	IOI ulu.
10		9	This script runs thorough tests on the inverse kinematics function the
11			designated team has written for the PUMA 260. At a minimum, it
12			calculates the following two scores:
13		8	
14		8	score without thnow
15	5		The score for the inverse kinematics solution when called without the
16	6	8	current configuration of the robot (th1now th6now). The ik function
17	7	8	is free to pick any valid solution. It should return NaN for all six
18	В		joint angles if the requested configuration is not reachable or is
19			outside the robot's joint limits. The score should range from 0 (worst
20		8	performance) to 100 (perfect performance).
21		8	
22		8	score_with_thnow
23		*	The score for the inverse kinematics solution when called with the
24		8	current configuration of the robot (thlnow th6now). The ik function
25		6	should pick the valid solution closest to the current joint angles. The function should return NaN for all six joint angles if the requested
21			configuration is not reachable or is outside the robot's joint limits.
28		8	The score should range from 0 (worst performance) to 100 (perfect
29		8	performance).
30		8	
31		8	Please change the name of this file to include your team number rather
32			than 00. Also list your neam number and the full names of your three
33			team members below.
34	4	8	The second se
	-		
<u>%</u> 0	pun	na_fk_	team00.m O puma_ik_team00.m O test_puma_ik_team00.m
_			script Ln 24 Col 18

$$o = o_c^0 + d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

wrist center

orientation

Quick Example with a MATLAB Rubik's Cube

Euler Angle Explanation

$$\begin{aligned} T_6^3 &= A_4 A_5 A_6 \\ &= \begin{bmatrix} R_6^3 & o_6^3 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

$$\theta_4 = \phi \qquad \theta_5 = \theta \qquad \theta_6 = \psi$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

The book explains how to calculate the three angles given **R**: see SHV pages 55-56

Turn in your best effort by 5:00 p.m. today.

Using your IK for light painting may expose issues; you will be able to submit a new IK solution and test function with your final code for project 1.

Questions ?

Project I : PUMA Light Painting

PUMA Light Painting code due by 5:00 p.m. on Thursday, October 25. Submissions after that are late.

Same teams as IK.

Develop in simulation, get approval, meet with a member of the teaching team to learn to run the real robot and make your light painting.

Code review will be ongoing; submit as soon as you are happy.

PUMA simulator to be released soon.

😝 🔿 🔿 Editor - /Users/kuchenbe/Documents/teaching/meam 520/puma/simulator/puma/demo.m		
File Edit Text Go Cell Tools Debug Desktop Window Help		
x * * <u>* 10 🖆 🖩 & h til * * * * & li til * * * * * * * * * * * * * * * * * * *</u>	‡ fx	:
$*$ \square $=$ 1.0 $+$ \div 1.1 \times $\%$ $\%$ 0		
1 % PUMA Simulator Demo		
3 - close all 4 - clear all		
5 - clc		
6		
<pre>7 - disp('Press ENTER to start');</pre>		
8 - pause;		
9 - figure(1); clf;		
<pre>10 - hold on; 11 - pumaStart;</pre>		
12 - pumaLEDOn;		
13		
14 - pumaLEDSet(1,0,0);		
<pre>15 - pumaMove(0,0,0,0,0);</pre>		
<pre>16 - disp('Press ENTER to continue');</pre>		
17 - pause;		
18 19 - pumaLEDSet(0,0,1);		
20 - pumaMove(0,pi/2,-pi/2,0,0,0);		
21 - disp('Press ENTER to continue');		
22 - pause;		
23		
24 - pumaLEDSet(0,1,0);		
<pre>25 - pumaMove(0,-pi/4,pi/4,0,pi/2,0); 26 - disp('Press ENTER to continue');</pre>		
27 - pause;		
28		
<pre>29 - pumaLEDSet(1,1,1);</pre>		
<pre>30 - pumaMove(0,0,0,0,-pi/2,0);</pre>		
31 - disp('PUMA is in the home position. Press ENTER to make it move.	·);	Ă
32 - pause;		V
🖉 o puma_fk_team00.m 🔹 o puma_ik_team00.m 🔹 test_puma_ik_team00.m 🔹 demo.m		
script	Ln 2	Col 1

If your IK solution is good, this part of the project should be fun and easy.

If your IK solution isn't working well yet, you will need to get it to work to be able to use the robot.

We will make a gallery of MEAM 520 PUMA light paintings.

Creative ideas for light painting?

Proposed Midterm Date Thursday, November 8, in class

Velocity Kinematics

Slides created by Jonathan Fiene

How do the velocities of the joints affect the linear and angular velocity of the end-effector?

These quantities are related by the **Jacobian**, a matrix that generalizes the notion of an ordinary derivative of a scalar function.

Jacobians are useful for planning and executing smooth trajectories, determining singular configurations, executing coordinated anthropomorphic motion, deriving dynamic equations of motion, and transforming forces and torques from the end-effector to the manipulator joints.

explore how **changes** in joint values affect the end-effector movement (velocities)

could have **N joints**, but only **six** end-effector velocity terms (xyzpts)

would love to have a matrix that goes from joint velocities to endeffector velocities!

look at it in two parts - position and orientation

$$v_n^0 = J_v \dot{q} \qquad \qquad \omega_n^0 = J_\omega \dot{q}$$

for

$$x(t) = f(q_1(t), q_2(t), \dots, q_n(t))$$

the time derivative can be found using

$$\frac{dx}{dt} = \sum_{i=1}^{n} \frac{\delta x}{\delta q_i} \frac{dq_i}{dt}$$

For an n-dimensional joint space and a cartesian workspace, the position Jacobian is a 3xn matrix composed of the partial derivatives of the end-effector position with respect to each joint variable.

matrix

From the forward kinematics, we can extract the position vector from the last column of the transform matrix:

$$\mathbf{d}_{2}^{0} = \begin{bmatrix} a_{2}c_{12} + a_{1}c_{1} \\ a_{2}s_{12} + a_{1}s_{1} \\ 0 \end{bmatrix}$$

Taking the partial derivative with respect to each joint variable produces the Jacobian:

$$\mathbf{J} = \begin{bmatrix} -a_1 s_1 - a_2 s_{12} & -a_2 s_{12} \\ a_1 c_1 + a_2 c_{12} & a_2 c_{12} \\ 0 & 0 \end{bmatrix}$$

which relates instantaneous joint velocities to endpoint velocities

$$\dot{x} = -a_2 \dot{\theta}_1 - a_2 \dot{\theta}_2$$
$$\dot{y} = a_1 \dot{\theta}_1$$
$$\dot{z} = 0$$

Position Jacobian for SCARA? Work with a partner. Where do you start?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a_1c_1 + a_2c_{12} \\ a_1s_1 + a_2s_{12} \\ -d_3 \end{bmatrix}$$

$$\mathbf{J}_{p} = \begin{bmatrix} \frac{\delta x}{\delta q_{1}} & \frac{\delta x}{\delta q_{2}} & \cdots & \frac{\delta x}{\delta q_{n}} \\ \frac{\delta y}{\delta q_{1}} & \frac{\delta y}{\delta q_{2}} & \cdots & \frac{\delta y}{\delta q_{n}} \end{bmatrix}$$
$$\mathbf{J}_{p} = \begin{bmatrix} -a_{1}s_{1} - a_{2}s_{12} & -a_{2}s_{12} & 0 \\ a_{1}c_{1} + a_{2}c_{12} & a_{2}c_{12} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Prismatic Joints

Figure 4.1: Motion of the end effector due to primsmatic joint i.

Revolute Joints

Figure 4.2: Motion of the end effector due to revolute joint i.

Prismatic Joints

Revolute Joints

 $J_{v_i} = z_{i-1} \qquad \qquad J_{v_i} = z_{i-1} \times (o_n - o_{i-1})$

Another way to construct the position Jacobian.

Questions ?

Singularities are points in the configuration space where infinitesimal motion in a certain direction is not possible and the manipulator loses one or more degrees of freedom

Mathematically, singularities exist at any point in the workspace where the Jacobian matrix loses rank.

a matrix is singular if and only if its determinant is zero: $det(\mathbf{J}) = 0$

when operating at a singular point, **bounded end**effector velocities may correspond to unbounded joint velocities

singularities are often found on the edges of the workspace, and also relate to non-unique solutions to the inverse kinematics