## MEAM 520

## Velocity Kinematics

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania


## MEAM.Design : MEAM520-12C-P01-IK

## GENERAL

Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANTOM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE
SolidWorks

MEAM.Design - MEAM 520 - PUMA Light Painting: IK

Now that you have your team, it's time to get to work on project 1. This assignment is due by 5:00 p.m. on Tuesday, October 16. Your team must submit this assignment and get it to work correctly before you will be allowed to do the next part of the project. Submissions after the deadline will be penalized, but not as harshly as for individual homework assignments.

The final goal of this project is to create a beautiful light painting by taking a long-exposure video and photo of the PUMA moving an LED around in the air. As an intermediate step toward that goal, you and your teammates must solve the inverse kinematics of the robot, so that you can later safely move its end-effector wherever is needed for your artwork.

## LED Location

The center of the LED is located at approximately [ 0 " $\left.0.125^{\prime \prime} 1.25{ }^{\prime \prime}\right]$ ' in frame 6 . The position and orientation of frames 0 and 6 are specified in the image at right, as are the positive directions for all the joints. These conventions match what was specified in Homework 3.

## Joint Angle Limits

$\theta 1$ (waist) range $=290 \mathrm{deg}$, lowerlimit $=-180 \mathrm{deg}$, upperlimit $=110 \mathrm{deg}$ $\theta 2$ (shoulder) range $=315 \mathrm{deg}$, lowerlimit $=-75 \mathrm{deg}$, upperlimit $=240$ deg
$\theta 3$ (elbow) range $=295$ deg , lowerlimit $=-235 \mathrm{deg}$, upperlimit $=60 \mathrm{deg}$ $\theta 4$ (wrist) range $=620 \mathrm{deg}$, lowerlimit $=-580 \mathrm{deg}$, upperlimit $=40 \mathrm{deg}$ $\theta 5$ (bend) range $=230 \mathrm{deg}$, lowerlimit $=-120 \mathrm{deg}$, upperlimit $=110 \mathrm{deg}$ 06 (flange) range $=510 \mathrm{deg}$, lowerlimit $=-215 \mathrm{deg}$, upperlimit $=295 \mathrm{deg}$

## PUMA 260 Simulator

At some point soon, we will publish a full forward kinematics simulator for the PUMA 260 robot. It will have the same software interface as our real PUMA robot You may find it useful to use the simulator to verify your forward kinematics and inverse kinematics solutions. More details will be

## $\mathrm{v}_{\mathrm{LED}}^{6}=[0 \mathrm{in} .0 .125 \mathrm{in} .1 .25 \mathrm{in} .]^{\top}$

 $\mathrm{a}=13.0 \mathrm{in}$.$\mathrm{b}=3.5 \mathrm{in}$.
$\mathrm{c}=8.0 \mathrm{in}$.
$\mathrm{d}=3.0 \mathrm{in}$. $\mathrm{e}=8.0 \mathrm{in}$.
$\mathrm{f}=2.5 \mathrm{in}$.




wrist center

(origin of tool frame)

$$
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

position

$$
\begin{gathered}
R=R_{3}^{0} R_{6}^{3} \\
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R \\
\text { orientation }
\end{gathered}
$$



Quick Example with a MATLAB Rubik's Cube


Euler Angle Explanation

$$
\begin{aligned}
& T_{6}^{3}=A_{4} A_{5} A_{6} \\
& =\left[\begin{array}{cc}
R_{6}^{3} & o_{6}^{3} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \theta_{4}=\phi \quad \theta_{5}=\theta \quad \theta_{6}=\psi \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
\end{aligned}
$$

The book explains how to calculate the three angles given $\mathbf{R}$ : see SHV pages 55-56

Turn in your best effort by 5:00 p.m. today.
Using your IK for light painting may expose issues; you will be able to submit a new IK solution and test function with your final code for project I.

## Questions?



Project I : PUMA Light Painting

PUMA Light Painting code due by $5: 00$ p.m. on Thursday, October 25. Submissions after that are late.

## Same teams as IK.

Develop in simulation, get approval, meet with a member of the teaching team to learn to run the real robot and make your light painting.

Code review will be ongoing; submit as soon as you are happy.

PUMA simulator to be released soon.


If your IK solution is good, this part of the project should be fun and easy.

If your IK solution isn't working well yet, you will need to get it to work to be able to use the robot.

We will make a gallery of MEAM 520 PUMA light paintings.

Creative ideas for light painting?

## Proposed Midterm Date

 Thursday, November 8, in class
## Velocity

 Knematics

Slides created by Jonathan Fiene



So much about position and orientation. What about velocities?


How do the velocities of the joints affect the linear and angular velocity of the end-effector?

These quantities are related by the Jacobian, a matrix that generalizes the notion of an ordinary derivative of a scalar function.

Jacobians are useful for planning and executing smooth trajectories, determining singular configurations, executing coordinated anthropomorphic motion, deriving dynamic equations of motion, and transforming forces and torques from the end-effector to the manipulator joints.

SCARA Robot Moving Just a Little Bit

explore how changes in joint values affect the end-effector movement (velocities)
could have $\mathbf{N}$ joints, but only six end-effector velocity terms (xyzpts)
would love to have a matrix that goes from joint velocities to endeffector velocities!
look at it in two parts - position and orientation

$$
v_{n}^{0}=J_{v} \dot{q}
$$

$$
\omega_{n}^{0}=J_{\omega} \dot{q}
$$

for

$$
x(t)=f\left(q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right)
$$

the time derivative can be found using

$$
\frac{d x}{d t}=\sum_{i=1}^{n} \frac{\delta x}{\delta q_{i}} \frac{d q_{i}}{d t}
$$

For an n-dimensional joint space and a cartesian workspace, the position Jacobian is a $3 \times n$ matrix composed of the partial derivatives of the end-effector position with respect to each joint variable.

$$
\mathbf{J}_{p}=\left[\begin{array}{cccc}
\frac{\delta x}{\delta q_{1}} & \frac{\delta x}{\delta q_{2}} & \cdots & \frac{\delta x}{\delta q_{n}} \\
\frac{\delta y}{\delta q_{1}} & \frac{\delta y}{\delta q_{2}} & \cdots & \frac{\delta y}{\delta q_{n}} \\
\frac{\delta z}{\delta q_{1}} & \frac{\delta z}{\delta q_{2}} & \cdots & \frac{\delta z}{\delta q_{n}}
\end{array}\right] \quad \begin{gathered}
\dot{\mathbf{p}}=\mathbf{J}_{p}(q) \dot{\mathbf{q}} \\
\end{gathered}
$$



$$
\mathbf{J}_{p}=\left[\begin{array}{cccc}
\frac{\delta x}{\delta q_{1}} & \frac{\delta x}{\delta q_{2}} & \cdots & \frac{\delta x}{\delta q_{n}} \\
\frac{\delta y}{\delta q_{1}} & \frac{\delta y}{\delta q_{2}} & \cdots & \frac{\delta y}{\delta q_{n}} \\
\frac{\delta z}{\delta q_{1}} & \frac{\delta z}{\delta q_{2}} & \cdots & \frac{\delta z}{\delta q_{n}}
\end{array}\right]
$$

From the forward kinematics, we can extract the position vector from the last column of the transform matrix:

$$
\mathbf{d}_{2}^{0}=\left[\begin{array}{c}
a_{2} c_{12}+a_{1} c_{1} \\
a_{2} s_{12}+a_{1} s_{1} \\
0
\end{array}\right]
$$

Taking the partial derivative with respect to each joint variable produces the Jacobian:

$$
\mathbf{J}=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} \\
0 & 0
\end{array}\right]
$$

which relates instantaneous joint velocities to endpoint velocities

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

$$
\begin{array}{cc}
(x, y) & \mathbf{J}=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12}
\end{array}\right] \\
0 & 0 \\
x & \theta_{1}=0, \theta_{2}=\pi / 2
\end{array}
$$

$$
\begin{gathered}
\dot{x}=-a_{2} \dot{\theta}_{1}-a_{2} \dot{\theta}_{2} \\
\dot{y}=a_{1} \dot{\theta}_{1} \\
\dot{z}=0
\end{gathered}
$$




## Position Jacobian for SCARA? <br> Work with a partner. Where do you start?

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
-d_{3}
\end{array}\right]} \\
\mathbf{J}_{p}=\left[\begin{array}{cccc}
\frac{\delta x}{\delta q_{1}} & \frac{\delta x}{\delta_{2}} & \cdots & \frac{\delta x}{\delta_{x}} \\
\frac{\delta y}{\delta q_{n}} & \frac{\delta y}{\delta_{2}} & \cdots & \frac{\delta y}{\delta q_{n}} \\
\frac{\delta z}{\delta q_{1}} & \frac{\delta z}{\delta q_{2}} & \cdots & \frac{\delta_{z}}{\delta q_{1}}
\end{array}\right] \\
\mathbf{J}_{p}=\left[\begin{array}{ccc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} & 0 \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} & 0 \\
0 & 0 & -1
\end{array}\right]
\end{gathered}
$$

## Prismatic Joints



Figure 4.1: Motion of the end effector due to primsmatic joint $i$.

## Revolute Joints



Figure 4.2: Motion of the end effector due to revolute joint $i$.

## Prismatic Joints

$$
J_{v_{i}}=z_{i-1}
$$

$$
J_{v_{i}}=z_{i-1} \times\left(o_{n}-o_{i-1}\right)
$$

Another way to construct the position Jacobian.


## Questions?

Singularities are points in the configuration space where infinitesimal motion in a certain direction is not possible and the manipulator loses one or more degrees of freedom

Mathematically, singularities exist at any point in the workspace where the Jacobian matrix loses rank.
a matrix is singular if and only if its determinant is zero:

$$
\operatorname{det}(\mathbf{J})=0
$$

when operating at a singular point, bounded endeffector velocities may correspond to unbounded joint velocities
singularities are often found on the edges of the workspace, and also relate to non-unique solutions to the inverse kinematics

