MEAM 520 More Manipulator Kinematics

Katherine J. Kuchenbecker, Ph.D.

General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Lecture 10: October 9, 2012

Homework 3 due today by 5:00 p.m.

Homework 3: DH Parameters and Inverse Kinematics

> MEAM 520, University of Pennsylvania Katherine J. Kuchenbecker, Ph.D.

> > September 30, 2012

This assignment is due on **Tuesday**, **October 9**, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. The code must be emailed according to the instructions at the end of this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Wednesday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Forward Kinematics of the PUMA 260 (30 points)

The first two problems center on the forward kinematics of the PUMA 260. We will be using this robot for the hands-on manipulator labs in this class. It is an articulated robot (RRR) with lateral offsets, plus a spherical wrist (RRR). The drawing below on the left shows the robot and the arrangement of its joints.

The schematic above on the right shows the zero configuration we have chosen for use in this class (a different pose from the drawing at the left). The joint angle arrows show the positive direction for each revolute joint (θ_1 to θ_6). All of the joints are shown at $\theta_i = 0$. The diagram also gives the measurements for the constant dimensions (a to f), all in inches.

1

-2 -2

Y (m)

SCARA Robot Drawing a Circle by Katherine J. Kuchenbecker (Solution)

-1

X (m)

Figure 3.33: Three-link planar robot with prismatic joint.

A few more good questions about DH parameters...

The Denavit-Hartenberg Convention (DHI) The axis x_i is perpendicular to the axis z_{i-1} (DH2) The axis x_i intersects the axis z_{i-1}

a_i Link Length	the perpendicular distance between z_i and z_{i-1} , measured along x_i
$lpha_i$ Link Twist	the angle between z_{i-1} and z_i , measured in the plane normal to x_i (right-hand rule around x_i)
d_i LinkOffset	the distance along z_{i-1} from o_{i-1} to the intersection with x_i
$ heta_i$ Joint Angle	the angle between x_{i-1} and x_i , measured in the plane normal to z_{i-1} (right-hand rule around z_{i-1})

- What type of robot is this?
- Work with a partner to determine:
 - Where should all the zaxes be?
 - Where should all the frame origins be?
 - Where should all the xaxes be?

What are the DH parameters?

Questions ?

Project I : PUMA Light Painting

Team Formation

You will work in a team of 3 (33 teams of 3, only one team of 4)

Each team must have at least one undergraduate and at least one graduate student. Submatriculants count as undergraduates.

(52 undergrads, 51 grads)

Try to have two MEAM students and one non-MEAM student on each team (71 MEAM, 33 non-MEAM)

Pick your team by midnight on Tuesday, October 9, or ask to be assigned. Email <u>denwong@seas.upenn.edu</u> Time to meet teammates at the end of class

00

MEAM.Design : MEAM520-12C-P01-Teams

🔺 🕨 🙆 🕂 😚 http://

+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520-12C-P01-Teams

Reader C Q Google

0

View Logout

Edit Upload

MEAM.Design : MEAM520-12C-P01-Teams

GENERAL	MEAM.Design - MEAM 520 - PUMA Light Painting: Team Selection							
Hall of Fame Laboratories Contact Info	Project 1 is PUMA Light Painting. The first part of this project is selecting your team. You must pick your team for PUMA Light Painting by midnight on Tuesday , October 9 . Note that this is earlier than the deadline that was originally announced in class, to leave time for us to assign teams for individuals who do not pick a team. The first deliverable your team will need to complete together will likely be due on Tuesday, October 16.							
COURSES MEAM 101 MEAM 201 MEAM 410/510	 Below are the team selection guidelines: Each team will include exactly three students. Each team must have at least one undergraduate and one graduate student. Submatriculants count as undergraduates. Aim to have two MEAM students and one non-MEAM student on each team. This is recommended, not required. Looking for teammates? Try using the <u>Project Teams & Study Groups tool on Piazza</u> .							
IPD 501 SAAST	When you have chosen your team, please send a list of all three names to <u>Denise Wong</u> (MEAM 520 TA). We will be happy to assign you to a team if you can't find two partners. Just send an email to <u>Denise</u> to explain the situation. Include your name, email address, and degree program to assist her in matching you with other students. Teams will be assigned on a rolling basis to give you as much time as possible to work together on the project.							
GUIDES Materials Laser Cutting 3D Printing Machining ProtoTRAK PUMA 260 PHANTOM BeagleBoard MAEVARM Phidget Tap Chart	If Denise does not hear from you by midnight on Tuesday, she will assign you to a team on Wednesday. The list below shows all confirmed teams. Team - Members 01 - Jason Gui, Yu Luo, and Xiaoting Zheng 02 - Cristina Sorice, Elizabeth Fedalei, Thomas Koletschka 03 - Bo Yuan, Noam Eisen, Dalton Banks 04 - Chaoyi Huang, Jiali Sheng, Chao Liu 05 - Nick McGill, Niko Vladimirov, Jonathan Balloch 06 - Chao Qu, Michael Gosselin, Yunkai Cui 07 - Wei-Ting Lo, Robyn Schwartz, Alexandre Miranda Anon 08 - Rui Zhang, Zhongqi Yue, Alex Sher 09 - Vivian Chu, Jennifer Hui, Eza Koch 10 - Jia Lue Huang, Mike Lo, Wenbin Zhao 11 - Tianyu Dong, Yanwei Du, Eleonoor Bosch							
SOFTWARE								

SolidWorks

Go to "http://medesign.seas.upenn.edu/index.php/Courses.MEAM520-12C-P01-Teams"

00

۰

MEAM.Design : MEAM520-12C-P01-IK

+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520-12C-P01-IK

Reader 🖒 🔍 Google

0

View Logout

Edit Upload

V⁶_{LED}

٢,

 θ_4

ι θ₆

 X_{6}

 θ_{5}

е

MEAM.Design : MEAM520-12C-P01-IK

GENERAL	MEAM.Design - MEAM 520 - PUMA Light Painting: IK	
Hall of Fame		
Laboratories	Now that you have your team, it's time to get to work on project 1. This	
Contact Info	assignment is due by 5:00 p.m. on Tuesday, October 16. Your team must submit this assignment and get it to work correctly before you will be allowed to do the payt part of the project. Submissions after the deadline	$v^6 = [0 \text{ in } 0.125 \text{ in } 1.25 \text{ in }]^T$
COURSES	will be penalized, but not as harshly as for individual homework	
MEAM 101	assignments.	
MEAM 201	The final goal of this project is to create a beautiful light painting by taking	•
MEAM 410/510	a long-exposure video and photo of the PUMA moving an LED around in	1
MEAM 520	the air. As an intermediate step toward that goal, you and your teammates	
IPD 501	must solve the inverse kinematics of the robot, so that you can later safely	i
SAAST	move its end-effector wherever is needed for your artwork.	12.01
	LED Location	a = 13.0 in. f
GUIDES	The center of the LED is located at approximately [0" 0.125" 1.25"] in	b = 3.5 in.
Materials	trame 6. The position and orientation of frames 0 and 6 are specified in the image at right, as are the positive directions for all the joints. These	c = 2.0 in
Laser Cutting	conventions match what was specified in Homework 3.	C = 8.0 in.
3D Printing	Joint Angle Limits	d = 3.0 in.
Machining	61 (waist) range = 290 deg , lowerlimit = -180 deg , upperlimit = 110 deg	e=80in*
ProtoTRAK	62 (shoulder) range = 315 deg , lowerlimit = -75 deg , upperlimit = 240	
PUMA 260	deg	f = 2.5 in.
PHANToM	63 (elbow) range = 295 deg , lowerlimit = -235 deg , upperlimit = 60 deg	
BeagleBoard	64 (wrist) range = 620 deg , lowerlimit = -580 deg , upperlimit = 40 deg	
MAEVARM	es (bend) range = 230 deg , lowerlimit = -120 deg , upperlimit = 110 deg	
Phidget		
Tap Chart	PUMA 260 Simulator	
SOFTWARE	the PUMA 260 robot. It will have the same software interface as our real PUMA robot. You may find it useful to use the simulator to verify your	
SolidWorks	forward kinematics and inverse kinematics solutions. More details will be	h [/] ← C →
Go to "http://medes	ign.seas.upenn.edu/index.php/Courses.MEAM520-12C-P01-IK"	

00	MEAM.Design : MEAM5	20-12C-P01-IK	
▲ ▶ 🙆 (+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM52	0-12C-P01-IK	Reader 🖒 🔍 Google 📀
MEAM 410/510 MEAM 520 IPD 501	a long-exposure video and photo of the PUMA moving an LED around in the air. As an intermediate step toward that goal, you and your teammates must solve the inverse kinematics of the robot, so that you can later safely move its end-effector wherever is needed for your artwork.		
GUIDES Materials Laser Cutting 3D Printing Machining ProtoTRAK PUMA 260 PHANTOM BeagleBoard MAEVARM	LED Location The center of the LED is located at approximately [0" 0.125" 1.25"]' in frame 6. The position and orientation of frames 0 and 6 are specified in the image at right, as are the positive directions for all the joints. These conventions match what was specified in Homework 3. Joint Angle Limits 01 (waist) range = 290 deg , lowerlimit = -180 deg , upperlimit = 110 deg 02 (shoulder) range = 315 deg , lowerlimit = -75 deg , upperlimit = 240 deg 03 (elbow) range = 295 deg , lowerlimit = -235 deg , upperlimit = 60 deg 04 (wrist) range = 620 deg , lowerlimit = -580 deg , upperlimit = 40 deg 05 (bend) range = 230 deg , lowerlimit = -120 deg , upperlimit = 110 deg 06 (flange) range = 510 deg , lowerlimit = -215 deg , upperlimit = 295 deg	a = 13.0 in. b = 3.5 in. c = 8.0 in. d = 3.0 in. e = 8.0 in. f = 2.5 in.	f f f' θ_5 θ_4 θ_4 θ_4
Phidget Tap Chart SOFTWARE SolidWorks Matlab	PUMA 260 Simulator At some point soon, we will publish a full forward kinematics simulator for the PUMA 260 robot. It will have the same software interface as our real PUMA robot. You may find it useful to use the simulator to verify your forward kinematics and inverse kinematics solutions. More details will be posted about the simulator after everyone has turned in Homework 3.	b, [≯] ← c -	
NX Nastran Fluent, Gambit SolidCAM Eagle OTHER Vendor List Design Links	Task 1: PUMA Forward Kinematics Function Talk about the forward kinematics of the PUMA 260 with your teammates. Compare the DH parameters and animations that you each created for Homework 3, and figure out any discrepancies between your solutions. Then work together to complete the puma_fk_team00.m starter function provided in the zip file of starter code. Change the name of the file and the name of the function on the file's first line to include your team's two-digit number, as defined on the teams page. This function takes the robot's six joint angles in radians and returns the four-by-four homogenous transformation representing the pose of frame 6 in frame 0. If needed, you are welcome to create other functions in separate files (following the same team naming convention) or as subfunctions within	θ_2	θ ₃

00	MEAM.Design : MEAM520-12C-P01-IK								
▲ ▶ 🙆 (+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520-12C-P01-IK	Reader C Q Google	\odot						
SOFTWARE SolidWorks Matlab NX	the PUMA 260 robot. It will have the same software interface as our real PUMA robot. You may find it useful to use the simulator to verify your forward kinematics and inverse kinematics solutions. More details will be posted about the simulator after everyone has turned in Homework 3. Task 1: PLIMA Ferrward Kinematics Function	·	- - -						
NX Nastran Fluent, Gambit SolidCAM Eagle OTHER Vendor List Design Links Editing Tips edit SideBar SEARCH	Task 1: PUMA Forward Kinematics Function Talk about the forward kinematics of the PUMA 260 with your teammates. Compare the DH parameters and animations that you each created for Homework 3, and figure out any discrepancies between your solutions. Then work together to complete the puma_fk_team00.m starter function provided in the <u>zip file of starter code</u> . Change the name of the file and the name of the function on the file's first line to include your team's two-digit number, as defined on the <u>teams page</u> . This function takes the robot's six joint angles in radians and returns the four-by-four homogenous transformation representing the pose of frame 6 in frame 0. If needed, you are welcome to create other functions in separate files (following the same team naming convention) or as subfunctions within your FK function. You may find this function useful inverse kinematics solution for the PUMA 260, remembering the concept of kinematic decoupling. Here the goal is to find the values of the joint angles (theta1 to theta6, in radians) that put the robot's LED end-	θ ₃							
Go	effector at a certain position and orientation that are specified relative to frame 0. Note that there are generally eight possible solutions to the PUMA's IK. To start, you should focus on finding one valid solution. Once you get that working, add in code to handle the constraint that the selected solution should be close to the robot's current configuration; the robot's current joint angles can be optionally passed into the function as th 1 now to th6 now. If no valid solution exists, your number) for all six joint angles. Complete the puma_ik_team00.m starter function provided in the zip file below, again needed. Task 3: Script to Test PUMA Inverse Kinematics To help you assess the quality of your inverse kinematics function, you must also create a script that does thorough IK testit two scores, both from 0 (worst performance) to 100 (perfect performance). One score is for finding inverse kinematics solut robot's current configuration, and the second score is for finding inverse kinematics solutions close to the current joint angle out what should be in this file to make it a reasonable test of the code. Make sure to test end-effector poses that are not reas constraints. Complete the test_puma_ik_team00.m starter script provided in the zip file below, again entering yo	function should return NaN (not a in entering your team number with ng. At a minimum, it should comp ions without worrying about the es of the robot. It is up to you to f inchable due to joint limits or othe our team number where needed.	a nere pute igure r						

MEAM.Design : MEAM520-12C-P01-IK + Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520-12C-P01-IK Q- Google Reader 🖒 0 takes the robot's six joint angles in radians and returns the four-by-four Vendor List homogenous transformation representing the pose of frame 6 in frame 0. Design Links If needed, you are welcome to create other functions in separate files θ. (following the same team naming convention) or as subfunctions within Editing Tips your FK function. You may find this function useful in the following steps. а edit SideBar Task 2: PUMA Inverse Kinematics Function Derive a full inverse kinematics solution for the PUMA 260, remembering SEARCH the concept of kinematic decoupling. Here the goal is to find the values of the joint angles (theta1 to theta6, in radians) that put the robot's LED end-Go effector at a certain position and orientation that are specified relative to frame 0. Note that there are generally eight possible solutions to the PUMA's IK. To start, you should focus on finding one valid solution. Once you get that working, add in code to handle the constraint that the selected solution should be close to the robot's current configuration; the robot's current joint angles can be optionally passed into the function as th1now to th6now. If no valid solution exists, your function should return NaN (not a number) for all six joint angles. Complete the puma ik team00.m starter function provided in the zip file below, again entering your team number where

Task 3: Script to Test PUMA Inverse Kinematics

To help you assess the quality of your inverse kinematics function, you must also create a script that does thorough IK testing. At a minimum, it should compute two scores, both from 0 (worst performance) to 100 (perfect performance). One score is for finding inverse kinematics solutions without worrying about the robot's current configuration, and the second score is for finding inverse kinematics solutions close to the current joint angles of the robot. It is up to you to figure out what should be in this file to make it a reasonable test of the code. Make sure to test end-effector poses that are not reachable due to joint limits or other constraints. Complete the test puma_ik_team00.m starter script provided in the zip file below, again entering your team number where needed.

Submission

needed.

- 1. Start an email to meam520@seas.upenn.edu
- 2. Make the subject PUMA IK: Team 00, replacing 00 with your team number.
- Attach all of your correctly named MATLAB files to the email. They should be puma_fk_teamXX.m, puma_ik_teamXX.m, and test_puma_ik_teamXX.m, where XX is your team number, plus any additional files you may have created, also named according to this convention.
- 4. Optionally include any comments you have about this assignment.
- Send the email.

Please come talk to the teaching team or post questions on Plazza if you get stuck on any part of this assignment.

po1-ik.zip (starter files)

© 2012 Jonathan P. Fiene | Powered by PmWiki 🔻

Figure 3.20: Four solutions of the inverse position kinematics for the PUMA manipulator.

0	0		Editor	- /Users	/kuchenb	e/Docume	nts/teachi	ng/mea	m 520/j	projects/01	light painting/01 ik/puma_fk_team00.m
File	Edi	it T	ext Go	Cell	Tools	Debug	Desktop	Wind	ow He	elp	
×	7	7 NO 200	16	×	- h 🛍	50	🎍 🗇 •	<i>i</i> 4 <	⊨ ⇒ .	f0, 돈 -	
*	Ç <mark></mark>	-	1.0 +	÷	1.1 ×	** **	0				
1	Ę	fu	nction	1 TO6	= pun	na_fk_t	eam00	th1,	th2,	th3,	th4, th5, th6)
2		응용	PUMA	FK_T	EAMOO	Calcu	lates	the	forwa	rd kin	ematics for the PUMA 260.
3		8									
4		8	Chis 1	atla	o file	provi	des th	ie st	arter	code	for the PUMA 260 forward
5		8]	cinema	atics	funct	ion of	proje	ect 1	in M	IEAM 52	0 at the University of
6		81	enns	vlvan:	ia. 1	he ori	.ginal	was	writt	en by 1	Professor Katherine J.
7		81	luche	beck	er in	Octobe	r of 2	2012.	Stud	lents w	ill work in teams modify this
8		8 (ode 1	to cre	eate t	heir c	wn sci	ipt.	Post	quest	ions on the class's Piazza
9		8:	orum	•							
10		8	The e			+ 1- 1	the		the	DUMA	europet doint angles in
11		- 16 i	rne s:	LX 1n	puts (thi	. the	are	the	PUMA S	current joint angles in
12		ъ. с	autai		pecifi	tion	οτατης	1 10	che c	order a	na sign conventions described
14		ъ.	in the	a doci	umente						
15		9.1	The o		trut i	e the	homoge	neou	e tra	neform	ation representing the page of
16		9	Frame	6 in	frame		the pos	itio	5 LIC n nar	+ of + 1	his transformation is in
17		2	nche	0 111	11 anie		ne por	ST CTO	n par		
18		\$. \$	mene	•							
19		- R 1	leas	e chai	nge th	e name	of th	is f	ile a	nd the	function declaration on the
20		8	first	line	above	to in	clude	vour	team	numbe	r rather than 00. Also list
21		8	our	neam	number	and t	he ful	1 na	mes c	f vour	three team members below.
22		8								- 100-	
23		8	leam 1	Jumbe	r:						
24		8	leam 1	lember	rs:						
25											
26											
27		**	ROBO	PAR	AMETER	S					
28		8	This 1	proble	em is	about	the PU	JMA 2	60 rc	bot, a	6-DOF manipulator.
29											
30		8 1	Define	e the	robot	's mea	sureme	ents.	The	se cor	respond to the diagram in the
31		8]	nomewo	ork an	nd are	e const	ant.				
32 -	-	a :	= 13.0); % :	inches	5					
33 -	-	b :	= 3.	5; 8 :	inches	5					
34 -	-	C :	= 8.0); % :	inches	5					<u>+</u>
25 -	-	d :	= 3.1)• * ·	inches	k team00 m	0	test ou	ma ik ter	am00 m	
% V	pun	na_IK_	earnoo.m	0	puma_i	K_teanoo.m	0	test_pu	inia_ik_te	anioo.m	
											puma_rk_team00 Ln 28 Col 18

00	0	Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/01 light painting/01 ik/puma_ik_team00.m
File	Edit	Text Go Cell Tools Debug Desktop Window Help
×	к 5	- 🁔 🗂 🖆 📓 🛎 🖄 🧐 · 🛤 🖛 🗰 🈥 📄 · 🗟 📽 · 🖶 🏦 🍿 🕼 🌆 👘 🗐 🍂 🗔 💽
*	Ç <mark>e</mark>	$-1.0 + \div 1.1 \times \mathscr{H}_{\star} \mathscr{H}_{\star} \qquad \textcircled{0}_{\star}$
1	Ę	function [th1 th2 th3 th4 th5 th6] = puma_ik_team00(x, y, z, phi, theta, psi
2		<pre>%% PUMA_IK_TEAM00 Calculates the full inverse kinematics for the PUMA 260.</pre>
3		8
4		* This Matlab file provides the starter code for the PUMA 260 inverse
5		* kinematics function of project 1 in MEAM 520 at the University of
6		* Pennsylvania. The original was written by Professor Katherine J.
1		* Kuchenbecker in October of 2012. Students will work in teams modify this
8		& code to create their own script. Post questions on the class s Plazza
10		s IOLUIII.
11		The first three input arguments (x, y, z) are the desired coordinates of
12		the PUMA's end-effector tip in inches, specified in the base frame. The
13		* origin of the base frame is where the first joint axis (waist) intersects
14		% the table. The z0 axis points up, and the x0 axis points out away from
15		% the robot, perpendicular to the front edge of the table. These arguments
16		% are mandatory.
17		8
18		% The fourth through sixth input arguments (phi, theta, psi) represent the
19		<pre>% desired orientation of the PUMA's end-effector in the base frame using</pre>
20		% ZYZ Euler angles in radians. These arguments are mandatory.
21		8
22		% The seventh through twelfth input arguments (thlnow th6now) are the
23		<pre>% current joint angles of the PUMA. These arguments are optional, but you</pre>
24		% must supply all of them if you supply any of them. Passing in the
25		<pre>% robot's current joint angles enables this function to find an IK solution</pre>
26		% close to the robot's current configuration, to avoid large jumps in the
27		* robot's movement. If these values are not passed in, the function may
28		* select from the possible solutions in any manner.
29		δ
30		• The six outputs (thi the) are the joint angles needed to place the
31		* orientation These joint angles are specified in radians according to the
32		a order and sign conventions described in the documentation. If this
34		* function cannot find a solution to the inverse kinematics problem, it
IC		A P
§ 0	puma_	_fk_team00.m © puma_ik_team00.m © test_puma_ik_team00.m
		puma_ik_team00 Ln 20 Col 31

0	0	Editor - /Users/kuchenbe/Documents/teaching/meam 520/projects/01 light painting/01 ik/test_puma_ik_team00.m	
File	Edit	ext Go Cell Tools Debug Desktop Window Help	
×	K 5	1) 🖆 🖩 🛎 🤊 (* 🍐 🖅 - 🛤 🍬 🍂 🖻 - 🖥 🗐 🍿 🏢 🏦 🔚 👘 🎼 🏌 🍂 🚺	
*	Ç	1.0 + \div 1.1 × $\%_{+}^{*}$ $\%_{-}^{*}$ \bigcirc	
1		<pre>% TEST_PUMA_IK_TEAM00 Tests the full inverse kinematics for the PUMA 260</pre>	• 👼 🗖
2			
3		This Matlab file provides the starter code for the PUMA 260 inverse	
4		kinematics testing script of project 1 in MEAM 520 at the University of	
5		Pennsylvania. The original was written by Professor Katherine J.	
6		Kuchenbecker in October of 2012. Students will work in teams modify this	
7		code to create their own script. Post questions on the class's Plazza	
8		IOTUM.	
10		This series there are the inverse kinematics function the	
11		designated team has written for the PIIMA 260. At a minimum, it	
12		calculates the following two scores:	
13		Calculated the following two booled.	
14		score without thnow	
15		The score for the inverse kinematics solution when called without the	
16		current configuration of the robot (th1now th6now). The ik function	
17		is free to pick any valid solution. It should return NaN for all six	
18		joint angles if the requested configuration is not reachable or is	
19		outside the robot's joint limits. The score should range from 0 (worst	
20		performance) to 100 (perfect performance).	
21			
22		score_with_thnow	
23		The score for the inverse kinematics solution when called with the	
24		current configuration of the robot (thinow thenow). The ik function	
25		function should return NaN for all six joint angles if the requested	
20		configuration is not reachable or is outside the robot's joint limits	
20		The score should range from 0 (worst performance) to 100 (perfect	
29		performance).	
30		Pollo line line i li	
31		Please change the name of this file to include your team number rather	
32		than 00. Also list your neam number and the full names of your three	
33		team members below.	-
34			Y
			- FI
2 0	puma_	teamuu.m uma_ik_teamuu.m utest_puma_ik_teamuu.m	10
		script Ln 24 Col	18

Questions ?

A 6-DOF Inverse Kinematics Example: Articulated/Elbow Manipulator with Spherical Wrist (pages 98-100, 103, 107-108 in SHV)

A helpful approach for 6-DOF robots: Kinematic Decoupling

wrist center

 o_c

$$o = o_c^0 + d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

o₆ tip of robot
 (origin of tool frame)

 d_6

position

 $R = R_3^0 R_6^3$ $R_6^3 = (R_3^0)^{-1} R = (R_3^0)^T R$ orientation

$$o = o_c^0 + d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

wrist center

orientation

$$T_{6}^{3} = A_{4}A_{5}A_{6}$$

$$= \begin{bmatrix} R_{6}^{3} & o_{6}^{3} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta_4 = \phi \qquad \theta_5 = \theta \qquad \theta_6 = \psi$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

The book explains how to calculate the three angles given **R**: see SHV pages 55-56

Euler Angle Explanation

a set of DH joint variables is given by

$$\begin{aligned}
\theta_1 &= \operatorname{Atan2}(x_c, y_c) & (3.64) \\
\theta_2 &= \operatorname{Atan2}\left(\sqrt{x_c^2 + y_c^2 - d^2}, z_c - d_1\right) \\
&-\operatorname{Atan2}(a_2 + a_3c_3, a_3s_3) & (3.65) \\
\theta_3 &= \operatorname{Atan2}\left(D, \pm \sqrt{1 - D^2}\right), \\
& with \ D = \frac{x_c^2 + y_c^2 - d^2 + (z_c - d_1)^2 - a_2^2 - a_3^2}{2a_2a_3} & (3.66) \\
\theta_4 &= \operatorname{Atan2}(c_1c_{23}r_{13} + s_1c_{23}r_{23} + s_{23}r_{33}, \\
& -c_1s_{23}r_{13} - s_1s_{23}r_{23} + c_{23}r_{33}) & (3.67)
\end{aligned}$$

$$\theta_5 = \operatorname{Atan2}\left(s_1r_{13} - c_1r_{23}, \pm\sqrt{1 - (s_1r_{13} - c_1r_{23})^2}\right)$$
 (3.68)

$$\theta_6 = \operatorname{Atan2}(-s_1 r_{11} + c_1 r_{21}, s_1 r_{12} - c_1 r_{22}) \tag{3.69}$$

The other possible solutions are left as an exercise (Problem 3-20).

Questions ?

New Office Hours

00	MEAM.Design : MEAM520 – Introduction to Robotics									
	+ 🔄 http://medesign.seas.upenn.edu/index.php/Courses/MEAM520 & 🗘 🔍 Google 📀									
Tap Chart	Textbook: Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar									
	SVH Errata									
SOFTWARE	Course (Calendar								
SolidWorks	MEAM 5	20							- 17	
Matiab	(Today)	Oct 7 -	- 13, 2012 👻				Print Wee	k Month Ag	enc	
Nastran		Sun 10/7	Mon 10/8	Tue 10/9	Wed 10/10	Thu 10/11	Fri 10/12	Sat 10/13		
Fluent, Gambit				Homework #3 due						
SolidCAM										
Eagle	9am									
	10am					10 - 11			-17	
OTHER	• roam					Office hours -				
Vendor List	11am					Philip			-12	
Design Links										
Editing Tips	12pm			12p – 1:30p		12p – 1:30p				
edit SideBar				Lecture		Lecture	12:30p - 1:30p			
	1pm		1p - 2p Office hours -				Ryan			
SEARCH			Denise	1:30p - 2:30p Office hours -						
	2pm			Prof.						
Go	3nm			Office hours -		30 - 40			-1	
	0,			Denise		Office hours -				
	4pm					Ryan)			
	5pm				5p – 6p Office hours					
					Philip					
	6pm									
	Events sho	wn in time zone: Er	stern Time					Google (Cale	
				hadra at louis and a					4	
C	Questions of	r concerns? Con	tact Professor Kucher	ndecker at <u>kuchenbe@s</u>	as.upenn.edu)4	P P	
Open "http://www.a	mazon.com/Ro	bot-Modeling-Con	trol-Mark-Spong/dp/0	471649902/" in a new tab					11.	

00	MEAM.Design : MEAM520 – Introduction to Robotics											
	+ Shttp://medesign.seas.upenn.edu/index.php/Courses/MEAM520 C Q Google S											
Tap Chart	Textbook: Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar SVH Errata											
SOFTWARE SolidWorks	Course Calend	dar										
Matlab	Today C Dct 14 - 20, 2012 -											
NX	(Today)	Oct 14 - 20, 2012 V	T., 10/10	Min 4 40/17	75	Week	Month Agenc					
Nastran	Sun	10/14 Mon 10/15	Tue 10/16	Wed 10/17	Thu 10/18	Fn 10/19	Sat 10/20					
Fluent, Gambit												
SolidCAM	9am											
Eagle												
	10am				10 - 11 Office hours -							
OTHER					Philip							
Vendor List	11am	11 - 12p Office hours -										
Design Links		Ryan					_					
	12pm		12p - 1:30p		12p - 1:30p							
Editing Tips			Coctore			12:30p - 1:30p Office hours -						
edit SideBar	1pm	1p - 2p Office hours -				Ryan						
SEARCH		Denise	1:30p - 2:30p Office hours -									
	2pm		Prof.									
			2:30p - 3:30p Office hours -									
Co	3pm	*****	Denise		3p - 4p Office hours - Prof.							
	4pm											
							framework111111111111111111111111111111111111					
	5pm			5p - 6p Office hours - Philip								
	6pm											
	Events shown in time	e zone: Eastern Time										
	Questions of concor	rne2 Contact Professor Kusha	nhocker at kuchanho	eose upopp odu			1					
C	Questions or concer	mar contact Professor Ruche	nbecker at <u>kuchenbe</u> (d	25645.upenn.euu		********						
Open "http://www.a	amazon.com/Robot-Mod	leling-Control-Mark-Spong/dp/0	471649902/" in a new ta	ıb			11					

Team Formation

You will work in a team of 3 (33 teams of 3, only one team of 4)

Each team must have at least one undergraduate and at least one graduate student. Submatriculants count as undergraduates.

(52 undergrads, 51 grads)

Try to have two MEAM students and one non-MEAM student on each team (71 MEAM, 33 non-MEAM)

Pick your team by midnight on Tuesday, October 9, or ask to be assigned. Email <u>denwong@seas.upenn.edu</u> Time to meet teammates at the end of class