MEAM 520

The Puma 260 and Project I

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

You Tube \square kathjulk ~

Robot Choreography: Stardance

Uploaded by gecco77 on Nov 16, 2009
Stardance: Exploring the expressive potential of robotic movement, we want to understand how to design the movement of a machine that may serve as a living aid for a severely disabled person. One of a series of pieces.

1 like, 0 dislikes

Remix this videol

Choreography: Margo K Apostolos
Music: Sandra Cotton
Video: Gayle E Curtis
Robot: PUMA 260 from the Rehabilitation R\&D Center, VA Palo Alto

Sneak peak of choreo (unfinished) robot by
by raestheroof
3,416 views

Robot Choreography Waves
by gecco 77
764 views

Robot Remains | Choreography
by Fiobie
3,405 views

New Honda Robot ASIMO 2012 - All
by seminarpaper
531,760 views

Daft Punk 'Robot Rock' choreography
by megajamluis jazz
128,438 viows

Incredible Robot Dance
by madnessmoe
868,699 viows
50,
Summary Of Dance and Rahnt Charanaranher

A few good questions about DH parameters...

FORWARD AND INVERSE KINEMATICS

Fig. 3.16 Elbow manipulate or with shoulder offset

The Denavit-Hartenberg Convention

Page 78 in SHV
(DHI) The axis x_{i} is perpendicular to the axis z_{i} (DH2) The axis x_{i} intersects the axis z_{i-1}

The Denavit-Hartenberg Convention

Page 78 in SHV
(DHI) The axis x_{i} is perpendicular to the axis z_{i-1}
(DH2) The axis x_{i} intersects the axis z_{i-1}

The Denavit-Hartenberg Convention

Page 78 in SHV
(DHI) The axis x_{i} is perpendicular to the axis z_{i-1}
(DH2) The axis x_{i} intersects the axis z_{i-1}

z_{i-1}, z_{i} are parallel. Note that in both cases (ii) and (iii) the axes z_{i-1} and z_{i} are coplanar. This situation is in fact quite common, as we will see in Section 3.2.3. We now consider each of these three cases.
(i) z_{i-1} and z_{i} are not coplanar: If z_{i-l} and z_{i} are not coplanar, then there exists a unique shortest line segment from z_{i-1} to z_{i}, perpendicular to both z_{i-1} to z_{i}. This line segment defines x_{i}, and the point where it intersects z_{i} is the origin o_{i}. By construction, both conditions (DH1) and (DH2) are satisfied and the vector from o_{i-1} to o_{i} is a linear combination of z_{i-1} and x_{i}. The specification of frame i is completed by choosing the axis y_{i} to form a right-handed frame. Since assumptions (DH1) and (DH2) are satisfied, the homogeneous transformation matrix A_{i} is of the form given in Equation (3.10)
(ii) z_{i-1} is parallel to z_{i} : If the axes z_{i-1} and z_{i} are parallel, then there are infinitely many common normals between them and condition (DH1) does not specify x_{i} completely. In this case we are free to choose the origin o_{i} anywhere along z_{i}. One often chooses o_{i} to simplify the resulting equations. The axis x_{i} is then chosen either to be directed from o_{i} toward z_{i-1}, along the common normal, or as the opposite of this vector. A common method for choosing o_{i} is to choose the normal that passes through o_{i-1} as the x_{i} axis; o_{i} is then the point at which this normal intersects z_{i}. In this case, d_{i} would be equal to zero. Once x_{i} is fixed, y_{i} is determined, as usual by the right hand rule. Since the axes z_{i-1} and z_{i} are parallel, α_{i} will be zero in this case.
(iii) z_{i-1} intersects z_{i} : In this case x_{i} is chosen normal to the plane formed by z_{i} and z_{i-1}. The positive direction of x_{i} is arbitrary. The on choice for the origin o_{i} in this case is at the point of intersection of z_{i} and z_{i-1}. that in this case the parameter a_{i} will be zero.

This constructive procedure works for frames $0, \ldots, n-1$ in an n-link robot. To complete the construction it is necessary to specify frame n. The final coordinate system $o_{n} x_{n} y_{n} z_{n}$ is commonly referred to as the end effector or tool frame (see Figure 3.5). The origin o_{n} is most often placed symmetrically between the fingers of the gripper. The unit vectors along the x_{n}, y_{n}, and z_{n} axes are labeled as n, s, and a, respectively. The terminology arises from the fact that the direction a is the approach direction, in the sense that the gripper typically approaches an object along the a direction. Similarly the s direction is the sliding direction, the direction along which

Questions?

Inverse Orientation Kinematics

Given rotation matrix \mathbf{R}, find the joint angles that put the end-effector in the desired orientation.

Euler Angles

Define a set of three intermediate angles, ϕ, θ, ψ, to go from $0 \rightarrow 3$

Euler Angles

step I: rotate by ϕ about z_{0}

Euler Angles

step 2: rotate by θ about y_{1}

Euler Angles

$$
\text { step } 3 \text { : rotate by } \psi \text { about } z_{2}
$$

Euler Angles to Rotation Matrices

(post-multiply using the basic rotation matrices)

$$
\begin{aligned}
\mathbf{R} & =\mathbf{R}_{z, \phi} \mathbf{R}_{y, \theta} \mathbf{R}_{z, \psi} \\
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& T_{6}^{3}=A_{4} A_{5} A_{6} \\
& =\left[\begin{array}{cc}
R_{6}^{3} & o_{6}^{3} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \theta_{4}=\phi \quad \theta_{5}=\theta \quad \theta_{6}=\psi \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
\end{aligned}
$$

The book explains how to calculate the three angles given \mathbf{R} : see SHV pages 55-56

2.5. PARAMETERIZATIONS OF ROTATIONS

To find a solution for this problem we break it down into two cases. First, suppose that not both of r_{13}, r_{23} are zero. Then from Equation (2.26) we deduce that $s_{\theta} \neq 0$, and hence that not both of r_{31}, r_{32} are zero. If not both r_{13} and r_{23} are zero, then $r_{33} \neq \pm 1$, and we have $c_{\theta}=r_{33}, s_{\theta}= \pm \sqrt{1-r_{33}^{2}}$ so

$$
\begin{equation*}
\theta=\operatorname{Atan} 2\left(r_{33}, \sqrt{1-r_{33}^{2}}\right) \tag{2.28}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta=\operatorname{Atan} 2\left(r_{33},-\sqrt{1-r_{33}^{2}}\right) \tag{2.29}
\end{equation*}
$$

where the function Atan2 is the two-argument arctangent function defined in Appendix A.

If we choose the value for θ given by Equation (2.28), then $s_{\theta}>0$, and

$$
\begin{aligned}
\phi & =\operatorname{Atan} 2\left(r_{13}, r_{23}\right) \\
\psi & =\operatorname{Atan} 2\left(-r_{31}, r_{32}\right)
\end{aligned}
$$

If we choose the value for θ given by Equation (2.29), then $s_{\theta}<0$, and

$$
\begin{align*}
\phi & =\operatorname{Atan} 2\left(-r_{13},-r_{23}\right) \tag{2.32}\\
\psi & =\operatorname{Atan} 2\left(r_{31},-r_{32}\right) \tag{2.33}
\end{align*}
$$

Thus, there are two solutions depending on the sign chosen for θ.
If $r_{13}=r_{23}=0$, then the fact that R is orthogonal implies that $r_{33}= \pm 1$, and that $r_{31}=r_{32}=0$. Thus, R has the form

$$
R=\left[\begin{array}{ccc}
r_{11} & r_{12} & 0 \tag{2.34}\\
r_{21} & r_{22} & 0 \\
0 & 0 & \pm 1
\end{array}\right]
$$

If $r_{33}=1$, then $c_{\theta}=1$ and $s_{\theta}=0$, so that $\theta=0$. In this case, Equation (2.26) becomes

$$
\left[\begin{array}{ccc}
c_{\phi} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} s_{\psi}-s_{\phi} c_{\psi} & 0 \\
s_{\phi} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} s_{\psi}+c_{\phi} c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
c_{\phi+\psi} & -s_{\phi+\psi} & 0 \\
s_{\phi+\psi} & c_{\phi+\psi} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus, the sum $\phi+\psi$ can be determined as

$$
\phi+\psi=\operatorname{Atan} 2\left(r_{11}, r_{21}\right)=\operatorname{Atan} 2\left(r_{11},-r_{12}\right)
$$

Since only the sum $\phi+\psi$ can be determined in this case, there are infinitely many solutions. In this case, we may take $\phi=0$ by convention. If $r_{33}=-1$, then $c_{\theta}=-1$ and $s_{\theta}=0$, so that $\theta=\pi$. In this case Equation (2.26) becomes

$$
\left[\begin{array}{rrr}
-c_{\phi-\psi} & -s_{\phi-\psi} & 0 \tag{2.36}\\
s_{\phi-\psi} & c_{\phi-\psi} & 0 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{rrr}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & -1
\end{array}\right]
$$

The solution is thus

$$
\begin{equation*}
\phi-\psi=\operatorname{Atan} 2\left(-r_{11},-r_{12}\right) \tag{2.37}
\end{equation*}
$$

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rotations about the principal coordinate axes x_{0}, y_{0}, and z_{0} taken in a specific order. These rotations define the roll, pitch, and yaw angles, which we shall also denote ϕ, θ, ψ, and which are shown in Figure 2.11.

Figure 2.11: Roll, pitch, and yaw angles.
We specify the order of rotation as $x-y-z$, in other words, first a yaw about x_{0} through an angle ψ, then pitch about the y_{0} by an angle θ, and finally roll about the z_{0} by an angle ϕ^{4} Since the successive rotations are

[^0]
Questions?

Project I

Light Painting with the Puma 260

- The Puma 260 has been equipped with a tri-color LED end-effector.
- Taking long-exposure photos of the Puma moving in a darkened room produces works of art known as "light paintings."
- Your job is to work in a team of three to create a beautiful Puma light painting.

MEAM.Design : MEAM520-11A-P01-Results

GENERAL
Hall of Fame
Laboratories
Contact Info

COURSES
MEAM 101
MEAM 201
MEAM 410/510
MEAM 520
IPD 501
SAAST

GUIDES
Materials
Laser Cutting
3D Printing
Machining
ProtoTRAK
PUMA 260
PHANTOM
BeagleBoard
MAEVARM
Phidget
Tap Chart

SOFTWARE SolidWorks Matlab
NX
Nastran

MEAM.Design - MEAM 520 - GRAFFIT1-Results Gallery
(click on the picture to get the full resolution version)

\square

What knowledge do you need to do this project?

Unimation

Slides created by Jonathan Fiene

FEATURES
The Seres 200 is the most compact model in the UNIMATE PUMA line of electrically driven industrial robots. With an 18 -inch reach and 2.2 pound payload capacity, the PUMA Series 200 robot is designed for medium to high-speed assembly and materials handling applications. Its capabilities are particularly suited to the requirements of electronics and other industries where lightweight parts handling is highly repetitive. fast and precise.

EASE OF USE

VAL " a revolutionary adivance in robot control sys ems is used to control and program PUMA robots The system uses an LSI-11 as a central processing unit and communicates with individual joint processors tor servo control of robot arm motions. The results are case in set up, high-tolerance repeatability, and greater application versatility.

VAL combines a sophisticated, casy wher. programming capability with advanced serve contwol methods. Intutive English language msitructumpm vides tast, efficient program generation and editios Capabilites. All servo-path computations are pertnmen in real time, which makes it possible to intertace: wift sensory-based systems.

EASE OF INSTALLATION

PUMA 200 robors are easily integrated min c.x. ing production lines because of the ease wilt whin, they are programmed. In addition, the robol (ath be easily and quickly reprogrammed for change: ill ily product or production process

Programs can be wrten either on on on mant a CRT or teletype terminal, or they can be genemile:n manually by guiding the robot arm through proytilll paths using a microprocessor based teach pentant With either method, position data can be ddeded (11 changed by key input, manual control or toppy (lisk input without aftecting the overall task progranm.

VAL reduces memory requirements; and penill: complex programs. such as palletizing routime:, th be easily written with a minimum number of tauthl positions.
signiticant turne savings catr also be reallaed by integrating predefined subroutines and task! illo (an plex operations. These tasks can also be stoned win floppy disks to build a library of routines, and cever whole programs, that can be loaded mito the meanny n any PUMA controller so that specitic tasks an re repell tive routines need to be writen only once

With VAL, the Series 200 can also responid th the tuations in the rate or other parameters of on (孔) duction processes since all servo-path compulation are performed in real time. changes in the ammpath, even task sequencing, can be mitrated by toed now from various sensors and viston systems. As a le"sill the 200 can interact flexibly and efficiently as path of.: large and complex manufacturity system

APPLICATIONS

ith its high speed, repeatability, and mexintiy the PUMA 200 robot is sulted to a wide rancue: on :smin parts-handling applications, and VAL contro mike:.: in easy to design application programs to Carry on the most difficult robotic tasks

Current assembly applications include antoniontive instrument panels, small electric motors, prine t cimant boards, subassemblies for radios, television sets, app: ances and more. Other applications molude pukagnu functions in the pharmaceutical, persona carte. ath food industries Palletizing of small parts, inspee :tun: and electronic parts handing in the computer, atem space and detense industries round out the present installed base.

ADVANCED ENGINEERING

Modular, straightforward layout facilitating easy board replacement and plug-in expansion.

High-volume
ventilation system.

Digital servo components designed for high-temperature operation and state-of-art dc motor control

High-density, double-sided floppydisk drive unit for program storage at 9,600 baud with 10,000 -hour MTBF componentry.

High-precision gearing designed for ultra-low backlash and specially hardened for long life.

Compact packaging
(19 in. rack mountable.)

Power amplifiers designed for high energy output with sensors for high temperature

Auto-start button for automatic operation

Easy-access panel location or self-diagnostic indicators and troubleshooting switches.

Industrial-grade, membrane-type teach pendant and CRT and sophisticated drive systems

Unimate ${ }^{6}$

PUMA ${ }^{\circledR}$ Mark II Robot

200 Series Equipment Manual for VAL ${ }^{\text {T" }}$ II and VAL ${ }^{\text {T" }}$ PLUS Operating Systems 398V1

Unimation

Figure 1-14. A Typical Video Terminal: CRT

Figure 1-15. A Typical Hardcopy Terminal: TTY

Figure 2-1. PUMA Dimensions - Installation

UNIMATE PUMA

200 Series

Performance

REPEATABILITY
STRAIGHT LINE VELOCITY
TRAIGNTNE VELOCITY $49.0 \mathrm{in} / \mathrm{s}$ max. $(1.25 \mathrm{~m} / \mathrm{s}$ max.)
ENVIRONMENTAL
$0-120^{\circ} \mathrm{F}\left(10-50^{\circ} \mathrm{C}\right)$
80% humidity (non-condensing). Shielded
gainst industrial line fluctuations and human
electro-static discharge

Physical Characteristics

ARM WEIGHT
CONTROLLER SIZE
15 lbs. (6.8 Kg)

CONTROLLER WEIGHT
CONTROLLER
CABLE LENGTH
$9^{\prime \prime} \times 12.5^{\prime \prime} \times 23.6^{\prime \prime}$
$(475 \mathrm{~mm} \times 312.5 \mathrm{~mm} \times 590 \mathrm{~mm}$) 80 lbs . $(36 \mathrm{Kg}$)

General Specification

CONFIGURATION
DRIVE
CONTROLLER
Teaching Method
Program Language
Program Capacity
External Program Storage ERIPPER CONTROL OWTIONAL AOCESSORI
OPTIONAL ACCESSORIES
6 revolute axes
lectric DC servo
System Computer (LSI-11/2 or 11/23)
By manual control and/or computer terminal VAL or VAL II
6 K CMOS user memory std
(32K for VAL II)
Floppy-disk (optional)
-way pneumatic solenoid
$10-130$ V AC $50-60 \mathrm{~Hz}, 500 \mathrm{~W}$
RT or TTY terminals, floppy-disk memory torage, I/ O module, 8 inpul/8 output signals gripper w/o fingers

What does the Puma's workspace look like?

Figure 2-2. Robot Arm: Operating Envelope

How does the Puma work?

First Step in Project I

Derive full inverse kinematics for the Puma 260
Given desired x, y, z position of LED and Euler angles for the end-effector, plus the current joint angles of the robot, calculate all the joint angles needed to reach the new desired configuration

Full assignment and MATLAB starter code will be distributed around Tuesday of next week

You will do this in teams of three

Team Formation

You will work in a team of 3 (33 teams of 3 , only one team of 4)

Each team must have at least one undergraduate and at least one graduate student.
Submatriculants count as undergraduates.
(52 undergrads, 51 grads)
Try to have two MEAM students and one non-MEAM student on each team (7I MEAM, 33 non-MEAM)

Pick your team by 5pm on Thursday, October II (one week from today)

Speed Meeting Activity

Stand up, and leave your stuff where it is.
All undergraduates stand around the edges of the room.

Grad students - go stand in front of an undergraduate.
Introduce yourselves: name, major, favorite robot.

Rotate! Rotate! Rotate! Rotate!

[^0]: It should be noted that other conventions exist for naming the roll, pitch, and yaw
 angles.

