MEAM 520

More Inverse Kinematics

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Homework 2:
Manipulator Kinematics and DH Parameters
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.
September 18, 2012

This assignment is due on Thursday, September 27 (updated), by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. The code must be emailed according to the instructions at the end of this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Friday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted. ad other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Written Problems (30 points)

The first set of problems are written, including two from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple your pages together

1. Custom problem - Kinematics of Baxter (5 points)

Rethink Robotics recently released a new robot named Baxter. Watch YouTube videos of Baxter (e.g http://www.youtube.com/watch?v=rjPFqkFyrOY) to learn about its kinematics. Draw a schematic of the serial kinematic chain of Baxter's left arm (the one the woman is touching in the picture above.)
2. SHV 3-7, page 113 - Three-link Cartesian Robot (10 points) Your solution should include a schematic of the manipulator with appropriately placed coordinate frames, a table of the DH parameters, and the final transformation matrix. Then answer the following question: What are the x, y, and z coordinates of the tip of the robot's end-effector in the base frame (as a function of the robot parameters and the joint coordinates)?

Solutions to Homework 2
MEAM 520
Introduction to Robotics
University of Pennsylvania
Professor Kuchenbecker
Fall 2012

Due on Tuesday, October 9, by 5:00 p.m.

Homework 3:
DH Parameters and Inverse Kinematics
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.
September 30, 2012

This assignment is due on Tuesday, October 9, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Wednesday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.
You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Forward Kinematics of the PUMA 260 (30 points)
The first two problems center on the forward kinematics of the PUMA 260 . We will be using this robot for the hands-on manipulator labs in this class. It is an articulated robot (RRR) with lateral offsets, plus a spherical wrist (RRR). The drawing below on the left shows the robot and the arrangement of its joints.

The schematic above on the right shows the zero configuration we have chosen for use in this class (a different pose from the drawing at the left). The joint angle arrows show the positive direction for each revolute joint $\left(\theta_{1}\right.$ to $\left.\theta_{6}\right)$. All of the joints are shown at $\theta_{i}=0$. The diagram also gives the measurements for the constant dimensions (a to f), all in inches.

WAIST ROTATION 315°

Questions?

SCARA Robot Drawing a Circle by Katherine J. Kuchenbecker (Solution)

$$
\begin{gathered}
\cos \theta_{2}=\frac{o_{x}^{2}+o_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} \\
\theta_{2}=\operatorname{atan} 2\left(\frac{ \pm \sqrt{1-\cos ^{2} \theta_{2}}}{\cos \theta_{2}}\right) \\
\theta_{1}=\operatorname{atan} 2\left(\frac{o_{y}}{o_{x}}\right)-\operatorname{atan} 2\left(\frac{a_{2} \sin \theta_{2}}{a_{1}+a_{2} \cos \theta_{2}}\right) \\
d_{3}=-o_{z}
\end{gathered}
$$

Understand the usefulness of inverse kinematics.

Questions?

Figure 3.33: Three-link planar robot with prismatic joint.

a. Given a desired position of the end effector, how many solutions are there to the inverse kinematics of the three-link planar arm shown in Figure 3.33? How does the number of solutions depend on the desired position, if at all?
b. If the orientation of the end effector is also specified, how many solutions are there? How does the number of solutions depend on the desired position and orientation, if at all?
c. Use the geometric approach to find the inverse kinematic solution(s) for the case when both the position and orientation of the end effector are specified as o_{x}, o_{y}, and α, remembering the concept of kinematic decoupling.

Learn how to derive the inverse kinematics for a manipulator.

Questions?

Inverse Kinematics

$$
\begin{aligned}
& \text { given } \mathbf{H}=\left[\begin{array}{cc}
\mathbf{R} & o \\
0 & 1
\end{array}\right] \\
& \text { and a certain manipulator with } n \text { joints }
\end{aligned}
$$

find q_{1}, \ldots, q_{n} such that $\mathbf{T}_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=\mathbf{H}$

A helpful approach for 6-DOF robots: Kinematic Decoupling
wrist center

$$
\begin{gathered}
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]} \\
\text { me) } \begin{array}{c}
\text { Position } \\
\begin{aligned}
R= & R_{3}^{0} R_{6}^{3} \\
R_{6}^{3}= & \left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R
\end{aligned} \\
\\
\text { orientation }
\end{array}
\end{gathered}
$$

(origin of tool frame)

The RPP Cylindrical Robot - Inverse Kinematics

A More Complicated Example - Planar RR Robot

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

$$
A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{1}^{0}=A_{1}
$$

$$
T_{2}^{0}=A_{1} A_{2}=\left[\begin{array}{cccc}
c_{12} & -s_{12} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} & c_{12} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Given desired o_{x} and o_{y} coordinates,

$$
\begin{aligned}
& \theta_{1}^{*}=? \\
& \theta_{2}^{*}=?
\end{aligned}
$$

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article Donate to Wikipedia Wikipedia Shop

- Interaction

Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia

- Toolbox
- Print/export
- Languages Alemannisch
العرية
Български
Bosanski
* Català

Cesky
Dansk
Deutsch
Eesti
© Español
Esperanto
Fuckara

Read Edit View history Search

Law of cosines

From Wikipedia, the free encyclopedia

This article is about the law of cosines in Euclidean goometry. For the cosine law of optics, see Lambort's cosine law. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a plane triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines says

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

where γ denotes the angle contained between sides of lengths a and b and opposite the side of length c.
Some schools also describe the notation as follows:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Where C represents the same as γ and the rest of the parameters are the same.
The formula above could also be represented in other form:

Figure 1 - A triangle. The angles $a \quad 5-$ ($\operatorname{or} A$), β (or B), and y (or C) are respectively opposite the sides a, b and c.

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle Y is a right angle (of measure 90° or $r / 2$ radians), then $\cos \gamma=0$, and thus the law of cosines reduces to the Pythagorean theorem:

$$
c^{2}=a^{2}+b^{2}
$$

The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known, and in computing the angles of a triangle if all three sides are known.

By changing which sides of the triangle play the roles of a, b, and c in the original formula, one discovers that the following two formulas also state the law of cosines:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos \alpha \\
& b^{2}=a^{2}+c^{2}-2 a c \cos \beta
\end{aligned}
$$

Though the notion of the cosine was not yet developed in his time, Euclid's Elements, dating back to the 3rd century BC,

Trigonometry

History
Usage
Functions
Generalized
Inverse functions
Further reading

Reference

Identities
Exact constants
Trigonometric tables
Laws and theorems
Law of sines
Law of cosines
Law of tangents
Law of cotangents

SCARA Robot Drawing a Circle by Katherine J. Kuchenbecker (Solution)

$$
\begin{gathered}
\cos \theta_{2}=\frac{o_{x}^{2}+o_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} \\
\theta_{2}=\operatorname{atan} 2\left(\frac{ \pm \sqrt{1-\cos ^{2} \theta_{2}}}{\cos \theta_{2}}\right) \\
\theta_{1}=\operatorname{atan} 2\left(\frac{o_{y}}{o_{x}}\right)-\operatorname{atan} 2\left(\frac{a_{2} \sin \theta_{2}}{a_{1}+a_{2} \cos \theta_{2}}\right) \\
d_{3}=-o_{z}
\end{gathered}
$$

Understand the usefulness of inverse kinematics.

Questions?

An Even More Complicated Example - Planar RRR Robot

Given a desired position of the end effector, how many solutions are there to the inverse kinematics for this robot?

Infinitely many solutions if the target position is in the workspace I solution if the target position is on the workspace boundary 0 solutions if the target position is outside the workspace

An Even More Complicated Example - Planar RRR Robot

If the orientation of the end effector is also specified, how many inverse kinematics solutions are there?

A helpful approach for 6-DOF robots: Kinematic Decoupling
wrist center

$$
\begin{gathered}
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]} \\
\text { me) } \begin{array}{c}
\text { Position } \\
\begin{aligned}
R= & R_{3}^{0} R_{6}^{3} \\
R_{6}^{3}= & \left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R
\end{aligned} \\
\\
\text { orientation }
\end{array}
\end{gathered}
$$

(origin of tool frame)

An Even More Complicated Example - Planar RRR Robot

If the orientation of the end effector is also specified, how many inverse kinematics solutions are there?

2 solutions if the wrist center is inside the 2-link workspace I solution if the wrist center is on the 2 -link workspace boundary 0 solutions if the wrist position is outside the 2 -link workspace Infinitely many solutions if the wrist center is the origin

Questions?

