MEAM 520

Inverse Kinematics

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Homework 2 due today by 5:00 p.m.

Homework 2:
Manipulator Kinematics and DH Parameters
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.
September 18, 2012

This assignment is due on Thursday, September 27 (updated), by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. The code must be emailed according to the instructions Friday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted You may talk with other students about this assignment, ask the teaching team questions, use a calculator You may talk with other students about this assignment, ask the teaching team questions, use a calculator
nd other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Written Problems (30 points)

The first set of problems are written, including two from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple your pages together.

1. Custom problem - Kinematics of Baxter (5 points)

Rethink Robotics recently released a new robot named Baxter. Watch YouTube videos of Baxter (e.g. http: $/ /$ www.youtube.com/watch?v=rjPFqkFyrOY) to learn about its kinematics. Draw a schematic Use the book's conventions for how to draw revolute and prismatic joints in 3D
2. SHV 3-7, page 113 - Three-link Cartesian Robot (10 points)

Your solution should include a schematic of the manipulator with appropriately placed coordinate frames, a table of the DH parameters, and the final transformation matrix. Then answer the following question: What are the x, y, and z coordinates of the tip of the robot's end-effector in the base frame (as a function of the robot parameters and the joint coordinates)?

Comment your code.

Do not hack. Get the math to work correctly.

Homework 3 will go out on Tuesday, due the following Tuesday.

Questions?

Inverse Kinematics

$$
\begin{aligned}
& \qquad \operatorname{given} \mathbf{H}=\left[\begin{array}{cc}
\mathbf{R} & o \\
0 & 1
\end{array}\right] \\
& \text { and a certain manipulator with } n \text { joints }
\end{aligned}
$$

$$
\text { find } q_{1}, \ldots, q_{n} \text { such that } \mathbf{T}_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=\mathbf{H}
$$

This yields 12 nonlinear equations in n unknown variables.
Yuck.

A helpful approach for 6-DOF robots: Kinematic Decoupling
wrist center

$$
\begin{gathered}
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]} \\
\text { me) } \begin{array}{c}
\text { Position } \\
\begin{aligned}
R= & R_{3}^{0} R_{6}^{3} \\
R_{6}^{3}= & \left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R
\end{aligned} \\
\\
\text { orientation }
\end{array}
\end{gathered}
$$

(origin of tool frame)

Questions?

Inverse Position Kinematics

Algebraic vs. Geometric
given the forward transform matrix for a manipulator

$$
\mathbf{T}_{n}^{0}=\left[\begin{array}{cc}
{\left[\mathbf{R}_{n}^{0}(\mathbf{q})\right]_{3 \times 3}} & {\left[\mathbf{d}_{n}^{0}(\mathbf{q})\right]_{3 \times 1}} \\
{[\mathbf{0}]_{1 \times 3}} & 1
\end{array}\right]
$$

solve the system of 3 equations from the displacement vector

$$
\begin{aligned}
d_{x} & =\left[\mathbf{d}_{n}^{0}(\mathbf{q})\right]_{1} \\
d_{y} & =\left[\mathbf{d}_{n}^{0}(\mathbf{q})\right]_{2} \\
d_{z} & =\left[\mathbf{d}_{n}^{0}(\mathbf{q})\right]_{3}
\end{aligned}
$$

to find the joint variables in terms of the end-effector position

$$
\mathbf{q}=\left[\begin{array}{c}
q_{1}\left(d_{x}, d_{y}, d_{z}\right) \\
q_{2}\left(d_{x}, d_{y}, d_{z}\right) \\
\vdots \\
q_{n}\left(d_{x}, d_{y}, d_{z}\right)
\end{array}\right]
$$

The RPP Cylindrical Robot - Algebraic Approach
4. 4

The RPP Cylindrical Robot - Algebraic Approach

血影

The RPP Cylindrical Robot - Algebraic Approach

Geometric Analysis

For most simple manipulators, it is easier to use geometry to solve for closed-form solutions to the inverse kinematics
solve for each joint variable q_{i} by projecting the manipulator onto the x_{i-1}, y_{i-1} plane
closed-form inverse kinematic solutions are not always possible, and if it is solvable, there are often multiple solutions

The RPP Cylindrical Robot - Geometric Approach

$$
\begin{gathered}
\theta_{1}^{*}=\operatorname{atan} 2\left(\frac{-x}{y}\right) \\
d_{2}^{*}=z-d_{1}
\end{gathered}
$$

$$
d_{3}^{*}=\sqrt{x^{2}+y^{2}}
$$

Questions?

Handing back Homework I paper part.

 Grades are on Blackboard.Solutions to both parts on reserve in engineering library.
Grading concerns? Bring your paper to office hours.

