MEAM 520

Denavit-Hartenberg (DH)

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Forward Kinematics

Slides created by Jonathan Fiene

Given ($\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}$), where is the tip of the robot?

4 links
3 joints
3 joint variables (q_{1}, q_{2}, q_{3})

$$
\mathbf{P}_{a}^{0}=\mathbf{H}_{1}^{0} \mathbf{H}_{2}^{1} \mathbf{P}_{a}^{2}
$$

HWI solutions will go on reserve in library after everyone has turned in the assignment (late additions to the class)

Given ($\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}$), where is the tip

$$
\begin{aligned}
& \mathbf{R}_{x, \theta}=\left[\begin{array}{ccr}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{y, \theta}=\left[\begin{array}{ccr}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{z, \theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Given ($\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}$), where is the tip of the robot?

$$
\mathbf{T}_{3}^{0}=\left[\begin{array}{cccc}
c_{1}^{*} & 0 & -s_{1}^{*} & -d_{3}^{*} s_{1}^{*} \\
s_{1}^{*} & 0 & c_{1}^{*} & d_{3}^{*} c_{1}^{*} \\
0 & -1 & 0 & d_{2}^{*}+l_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This is the general idea of forward kinematics for manipulators.

Notice that there were many choices we had to make regarding frame placement, which means there are many equally good solutions.

The robotics community has agreed on a set of conventions to ensure uniformity.

Slides created by Jonathan Fiene

Denavit-Hartenberg Parameters

The Denavit-Hartenberg convention defines four parameters and some rules to help characterize arbitrary kinematic chains
start by attaching a frame to each link: the joint variable for joint $\mathrm{i}+\mathrm{I}$ acts along/around z_{i} the axis x_{i} is perpendicular to, and intersects, z_{i-1} the following conventions make this process easier (p. 82 in SHV):
if z_{i-1} is parallel to $z_{i} \quad$ orient x_{i} toward z_{i-1}
if z_{i-1} intersects z_{i}
\qquad
if z_{i-1} is not coplanar with z_{i}
orient x_{i} normal to the plane formed by z_{i-1} and z_{i}
orient X_{i} along normal with z_{i-1}

The Denavit-Hartenberg convention defines four

 parameters and some rules to help characterize arbitrary kinematic chainsa_{i}
Link \quad the distance perpendicular to z_{i} and z_{i-1}, measured along x_{i} Length

$$
\alpha_{i}
$$

Link the angle between z_{i-1} and z_{i}, measured in the plane normal to X_{i}
Twist (right-hand rule around X_{i})
d_{i}
Link Offset
θ_{i}
Joint the angle between x_{i-1} and x_{i}, measured in the plane normal to z_{i-1}
Angle
(right-hand rule around z_{i-1})

The Denavit-Hartenberg transform results from successive rotations and translations via the four DH parameters

The transform from i-I to i:

$$
\begin{aligned}
A_{i} & =\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \\
\operatorname{Trans}_{x, a_{i}} & \operatorname{Rot}_{x, \alpha_{i}} \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A_{i} & =\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}} \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \times\left[\begin{array}{llll}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Planar RR Robot

Change to due Thursday, September 27

Homework 2:
Manipulator Kinematics and DH Parameters
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D
September 18, 2012

This assignment is due on Tuesday, September 25, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. The code must be emailed according to the instructions at the end of hey will be penalized by 25%. After theadline, no further assignments may be submitted Yoy will be penalized by 25%. After that deadline, no further assignments may be submitted
You may talk with other students about this assignment, ask the teaching team questions, use a calculator
and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Written Problems (30 points)

The first set of problems are written, including two from the textbook, Robot Modeling and Control by Spong Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple your pages together

1. Custom problem - Kinematics of Baxter (5 points)

Rethink Robotics recently released a new robot named Baxter. Watch YouTube videos of Baxter (e.g http:// www.youtube.com/watch? $\mathrm{v}=\mathrm{rjPFqkFyrOY}$) to learn about its kinematics. Draw a schematic Use the book's conventions for how to draw revolute and prismatic joints in 3D
2. SHV 3-7, page 113 - Three-link Cartesian Robot (10 points)

Your solution should include a schematic of the manipulator with appropriately placed coordinate frames, a table of the DH parameters, and the final transformation matrix. Then answer the following question: What are the x, y, and z coordinates of the tip of the robot's end-effector in the base frame (as a function of the robot parameters and the joint coordinates)?

DH Parameters for SCARA Manipulator

pages 9|-93

Questions?

