MEAM 520

Homogenous Transformations

Katherine J. Kuchenbecker, Ph.D.

General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Office Hours

- Monday I-2 pm: Denise Wong, GRASP Conference Room
- Tuesday 1:30-2:30 pm :: Katherine Kuchenbecker, Towne 224
- Tuesday 2:30-3:30 pm :: Denise Wong, GRASP Conference Room
- Wednesday 5-6 pm :: Philip Dames, GRASP Conference Room
- Thursday 10-11 am :: Philip Dames, GRASP Conference Room
- Thursday 3-4 pm :: Katherine Kuchenbecker, Towne 224

New Course Website

Rotation Matrices

Slides created by Jonathan Fiene

$$\mathbf{R} = \left[egin{array}{cccc} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{array}
ight]$$

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\ x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\ x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0} \end{bmatrix}$$

SO(3)

Special Orthogonal group of order 3

Rotation matrices serve three purposes (p. 47 in SHV):

- 1. Coordinate transformation relating the coordinates of a point p in two different frames y_1
- 2. Orientation of a transformed coordinate frame with respect to a fixed frame
- 3. Operator taking a vector and rotating it to yield a new vector in the same coordinate frame

Composite Rotations

Composition of Rotations with Respect to the Current Frame

the result of a successive rotation about the current (intermediate) frame can be found by **post-multiplying** by the corresponding rotation matrix

$$\mathbf{R}_2^0 = \mathbf{R}_1^0 \; \mathbf{R}_2^1$$

Composition of Rotations with Respect to a Fixed Frame

the result of a successive rotation about a fixed frame can be found by **pre-multiplying** by the corresponding rotation matrix

$$\mathbf{R}_2^0 = \mathbf{R} \; \mathbf{R}_1^0$$

Note that ${f R}$ is a rotation about the original frame

Parameterizing Rotations

Parameterization of Rotations

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\ x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\ x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0} \end{bmatrix}$$

in three dimensions, no more than 3 values are needed to specify an arbitrary rotation

which means that the 9-element rotation matrix has at least 6 redundancies

numerous methods have been developed to represent rotation/orientation with less redundancy

Euler Angles

Roll, Pitch, Yaw Angles

Axis/Angle Representation

Conventions vary, so always check definitions!

Define a set of three **intermediate** angles, ϕ, θ, ψ , to go from $0 \to 3$

step I:rotate by ϕ about z_0

step 2: rotate by θ about y_1

step 3: rotate by ψ about z_2

(post-multiply using the basic rotation matrices)

$$\mathbf{R} = \mathbf{R}_{z,\phi} \; \mathbf{R}_{y,\theta} \; \mathbf{R}_{z,\psi}$$

$$= \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

defined as a set of three angles about a fixed reference

(pre-multiply using the basic rotation matrices)

$$\mathbf{R} = \mathbf{R}_{z,\phi} \; \mathbf{R}_{y,\theta} \; \mathbf{R}_{x,\psi}$$

$$= \left[egin{array}{cccc} c_{\phi} & -s_{\phi} & 0 \ s_{\phi} & c_{\phi} & 0 \ 0 & 0 & 1 \ \end{array}
ight] \left[egin{array}{cccc} c_{ heta} & 0 & s_{ heta} \ 0 & 1 & 0 \ -s_{ heta} & 0 & c_{ heta} \ \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & c_{\psi} & -s_{\psi} \ 0 & s_{\psi} & c_{\psi} \ \end{array}
ight]$$

$$= egin{bmatrix} c_{\phi}c_{ heta} & c_{\phi}s_{ heta}s_{\psi} - s_{\phi}c_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{ heta}c_{\psi} \ s_{\phi}c_{ heta} & s_{\phi}s_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{ heta}c_{\psi} - c_{\phi}s_{\psi} \ -s_{ heta} & c_{ heta}s_{\psi} & c_{ heta}c_{\psi} \end{bmatrix}$$

rotation by an angle about an axis in space

any rotation matrix can be represented this way!

$$\theta = \cos^{-1}\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right) \qquad k = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Talk to the person next to you. Explain one of the three parameterization approaches to your partner, then switch. Talk about the third one together.

Homogeneous Transformations

a rigid motion couples pure translation with pure rotation

a **homogeneous transformation** is a matrix representation of rigid motion, defined as

$$\mathbf{H} = \begin{bmatrix} \mathbf{R} & \mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

where ${f R}$ is the 3x3 rotation matrix, and ${f d}$ is the 3x1 translation vector

$$\mathbf{H} = egin{bmatrix} n_x & s_x & a_x & d_x \ n_y & s_y & a_y & d_y \ n_z & s_z & a_z & d_z \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

the **homogeneous representation** of a vector is formed by concatenating the original vector with a unit scalar

$$\mathbf{P} = \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$

where \mathbf{p} is the 3x1 vector

$$\mathbf{P} = \left[egin{array}{c} p_x \ p_y \ p_z \ 1 \end{array}
ight]$$

Homogeneous Transformations

rigid body transformations are accomplished by pre-multiplying by the homogenous transform

$$\mathbf{P}^0 = \mathbf{H}_1^0 \; \mathbf{P}^1$$

{example with quadrotor model}

composition of multiple transforms is the same as for rotation matrices:

post-multiply when successive rotations are relative to intermediate frames

$$\mathbf{H}_{2}^{0} = \mathbf{H}_{1}^{0} \; \mathbf{H}_{2}^{1}$$

pre-multiply when successive rotations are relative to the first fixed frame

$$\mathbf{H}_2^0 = \mathbf{H} \; \mathbf{H}_1^0$$

Composition (intermediate frame)

$$\mathbf{H}_{2}^{0} = \mathbf{H}_{1}^{0} \ \mathbf{H}_{2}^{1} = \begin{bmatrix} \mathbf{R}_{1}^{0} & \mathbf{d}_{1}^{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{2}^{1} & \mathbf{d}_{2}^{1} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2}^{0} & \mathbf{R}_{1}^{0} \mathbf{d}_{2}^{1} + \mathbf{d}_{1}^{0} \\ \mathbf{0} & 1 \end{bmatrix}$$

Inverse Transform

$$\mathbf{H}_0^1 = \begin{bmatrix} \mathbf{R}_0^1 & \mathbf{d}_0^1 \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} (\mathbf{R}_1^0)^\top & -(\mathbf{R}_1^0)^\top \mathbf{d}_1^0 \\ \mathbf{0} & 1 \end{bmatrix}$$

Homework I

Homework 1: Rigid Motions and Homogeneous Transformations

MEAM 520, University of Pennsylvania Katherine J. Kuchenbecker, Ph.D.

September 11, 2012

This assignment is due on Tuesday, September 18, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor Kuchenbecker's office, Towne 224. The code must be emailed according to the instructions at the end of this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Wednesday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Book Problems (30 points)

The first set of problems is from the textbook, *Robot Modeling and Control* by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple together all pages of your assignment.

- 1. SHV 2-10, page 66 Sequence of Rotations (5 points)

 Please specify each element of each matrix in symbolic form and show the order in which the matrices should be multiplied; as stated in the problem, you do not need to perform the matrix multiplication.
- 2. SHV 2-14, page 67 Rotating a Coordinate Frame $(5\ points)$ Sketch the initial, intermediate, and final frames by reading the text in the problem. Then find R in two ways: by inspection of your sketch and by calculation. Check your solutions against one another.
- 3. SHV 2-23, page 68 Axis/Angle Representation (10 points)
- 4. SHV 2-39, page 70 Homogeneous Transformations (10 points) Treat frame $o_2x_2y_2z_2$ as being located at the center of the cube's bottom surface (as drawn in Figure 2.14), not at the center of the cube (as stated in the problem).

MATLAB Programming (30 points)

This class will use MATLAB to analyze and simulate robotic systems and also to control real robots. While Professor Kuchenbecker loves MATLAB, she recognizes that it can be difficult to use at the start. Even if you don't like MATLAB now, please give it a chance, and come to office hours or contact the teaching team if you feel lost or frustrated.

Your task for this question is to update a provided MATLAB script so that it animates the movement of rectangular block that was moved in a specific way. The motion was captured on video, and the positions and orientations of the block were recorded over time using a Ascension TrakStar magnetic motion tracking system that includes a sensor located inside the block.

000	fon oach		chabus v v z	and much la	alaustian	flying_bo		A i ma			
	nsor1:	0x0000	status x, y, z 0.312	8.886	-15.579	85.703	2.694	-173.770	0	4	1347328434.211
	nsor1:	0x0000	0.312	8.881	-15.579	85.703	2.687	-173.784	ø	4	1347328434.228
	nsor1:	0x0000	0.312	8.873	-15.579	85.696	2.673	-173.798	a	4	1347328434.244
	nsor1:	0×0000	0.312	8.868	-15.579	85.703	2.645	-173.820	ø	4	1347328434.261
	nsor1:	0×0000	0.312	8.864	-15.583	85.718	2.624	-173.841	0	4	1347328434.277
	nsor1:	0×0000	0.312	8.859	-15.583	85.746	2.603	-173.862	ø	4	1347328434.294
	nsor1:	0×0000	0.312	8.855	-15.587	85.788	2.589	-173.897	0	4	1347328434.315
	ensor1:	0×0000	-0.237	7.163	-13.179	85.729	0.776	-174.592	0	3	1347328468.754
	ensor1:	0×0000	-0.237	7.163	-13.175	85.729	0.776	-174.592	0	3	1347328468.763
	ensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.783	-174.592	0	3	1347328468.775
	ensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.783	-174.592	0	3	1347328468.783
	ensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.790	-174.599	0	3	1347328468.800
Se	ensor1:	0×0000	-0.229	7.163	-13.175	85.729	0.797	-174.606	0	3	1347328468.817
Se	ensor1:	0×0000	-0.229	7.163	-13.175	85.729	0.804	-174.606	0	3	1347328468.833
Se	ensor1:	0×0000	-0.224	7.159	-13.175	85.722	0.811	-174.613	0	3	1347328468.850
Se	ensor1:	0x0000	-0.220	7.154	-13.179	85.721	0.825	-174.613	0	3	1347328468.867
Se	ensor1:	0x0000	-0.215	7.150	-13.179	85.728	0.846	-174.627	0	3	1347328468.883
Se	ensor1:	0×0000	-0.211	7.146	-13.184	85.736	0.860	-174.641	0	3	1347328468.900
Se	ensor1:	0x0000	-0.207	7.137	-13.188	85.764	0.867	-174.662	0	3	1347328468.917
Se	ensor1:	0×0000	-0.202	7.132	-13.188	85.778	0.874	-174.676	0	3	1347328468.933
Se	ensor1:	0×0000	-0.202	7.128	-13.192	85.792	0.874	-174.683	0	3	1347328468.950
Se	ensor1:	0×0000	-0.198	7.124	-13.192	85.799	0.874	-174.690	0	3	1347328468.967
Se	ensor1:	0×0000	-0.198	7.119	-13.192	85.813	0.874	-174.697	0	3	1347328468.983
Se	ensor1:	0×0000	-0.198	7.115	-13.197	85.820	0.867	-174.704	0	3	1347328469.000
Se	ensor1:	0×0000	-0.193	7.110	-13.197	85.827	0.860	-174.711	0	3	1347328469.017
Se	ensor1:	0×0000	-0.189	7.106	-13.201	85.834	0.846	-174.711	0	3	1347328469.033
Se	ensor1:	0×0000	-0.189	7.102	-13.201	85.841	0.825	-174.711	0	3	1347328469.050
Se	ensor1:	0×0000	-0.185	7.097	-13.201	85.855	0.804	-174.711	0	3	1347328469.067
Se	ensor1:	0×0000	-0.185	7.093	-13.201	85.869	0.783	-174.697	0	3	1347328469.083
Se	nsor1:	0×0000	-0.185	7.088	-13.201	85.876	0.762	-174.690	0	3	1347328469.100
Se	ensor1:	0x0000	-0.185	7.088	-13.201	85.883	0.748	-174.683	0	3	1347328469.117
Se	ensor1:	0x0000	-0.185	7.088	-13.201	85.883	0.741	-174.676	0	3	1347328469.133
Se	ensor1:	0×0000	-0.189	7.088	-13.201	85.876	0.734	-174.669	0	3	1347328469.150
Se	ensor1:	0×0000	-0.189	7.088	-13.201	85.869	0.727	-174.662	0	3	1347328469.167
Se	ensor1:	0×0000	-0.189	7.088	-13.201	85.862	0.720	-174.655	0	3	1347328469.183
Se	ensor1:	0×0000	-0.189	7.088	-13.201	85.848	0.706	-174.655	0	3	1347328469.200
Se	ensor1:	0×0000	-0.193	7.088	-13.201	85.813	0.692	-174.655	0	3	1347328469.217
	ensor1:	0×0000	-0.193	7.093	-13.206	85.715	0.650	-174.655	0	3	1347328469.233
	ensor1:	0×0000	-0.198	7.097	-13.210	85.497	0.581	-174.635	0	3	1347328469.250
	ensor1:	0×0000	-0.193	7.106	-13.219	85.062	0.490	-174.592	0	3	1347328469.267
	ensor1:	0×0000	-0.180	7.110	-13.228	84.437	0.427	-174.536	0	3	1347328469.283
	ensor1:	0×0000	-0.154	7.110	-13.236	83.650	0.399	-174.536	0	3	1347328469.300
	ensor1:	0×0000	-0.114	7.106	-13.254	82.409	0.399	-174.614	0	4	1347328469.321
	ensor1:	0×0000	-0.083	7.102	-13.267	81.540	0.420	-174.677	0	4	1347328469.333
Se	ensor1:	0×0000	-0.022	7.088	-13.285	79.896	0.476	-174.761	0	4	1347328469.354

Flying Box by PUT YOUR NAME HERE

Programming Homework Tips:

I.Write out your approach before sitting down to program.

2. Start early to give yourself time to figure things out.

Questions?