MEAM 520

Homogenous Transformations

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

YouTube

Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV

Upioaded by frankerssj on Sep 16, 2010
This video shows our results on autonomous multi-floor indoor navigation with a quadrotor. We designed a system that is capable of autonomous navigation with real-time performance on a mobile processor using only onboard
Show more

All Comments (19)

Inventor Begins Testing a 'Star Wars'
by newssciencenews
436.809 views FEATURED

Complete Indoor Autonomous
by ghemann1
16,611 views

Autonomous Aerial Navigation in Confined by frankerssj
39,012 views

How To Uso Android Beam and NFC by PhoneBuff
4,505 views

GTNA Best Of Both Worlds: $\mathbf{3 6 0}$ vs Kerser by kings6206
6,791 viens

Adaptive configuration control - formation
by aaclab

Office Hours

- Monday I-2 pm :: Denise Wong, GRASP Conference Room
- Tuesday I:30-2:30 pm :: Katherine Kuchenbecker,Towne 224
- Tuesday 2:30-3:30 pm :: Denise Wong, GRASP Conference Room
-Wednesday 5-6 pm :: Philip Dames, GRASP Conference Room
- Thursday I0-II am :: Philip Dames, GRASP Conference Room
- Thursday 3-4 pm :: Katherine Kuchenbecker, Towne 224

New Course Website

Rotation Matrices

Slides created by Jonathan Fiene
$\mathbf{R}=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]$

SO(3)

Special Orthogonal group of order 3

Rotation matrices serve three purposes (p .47 in SHV):
I. Coordinate transformation relating the coordinates of a point p in two different frames
2. Orientation of a transformed coordinate frame with respect to a fixed frame
3. Operator taking a vector and rotating it to yield a new vector in the same coordinate frame

Composite

 Rotations
Composition of Rotations with Respect to the Current Frame

Composition of Rotations with Respect to the Current Frame

the result of a successive rotation about the current (intermediate) frame can be found by post-multiplying by the corresponding rotation matrix

$$
\mathbf{R}_{2}^{0}=\mathbf{R}_{1}^{0} \mathbf{R}_{2}^{1}
$$

Composition of Rotations with Respect to a Fixed Frame

Composition of Rotations with Respect to a Fixed Frame

the result of a successive rotation about a fixed frame can be found by pre-multiplying by the corresponding rotation matrix

$$
\mathbf{R}_{2}^{0}=\mathbf{R} \mathbf{R}_{1}^{0}
$$

Note that \mathbf{R} is a rotation about the original frame

You should read the book and think about this.

Parameterizing

 Rotations
Parameterization of Rotations

$$
\mathbf{R}_{1}^{0}=\left[\begin{array}{ccc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
$$

in three dimensions, no more than 3 values are needed to specify an arbitrary rotation
which means that the 9 -element rotation matrix has at least 6 redundancies
numerous methods have been developed to represent rotation/orientation with less redundancy

Euler Angles Roll, Pitch, Yaw Angles Axis/Angle Representation

Conventions vary, so always check definitions!

Euler Angles

Define a set of three intermediate angles, ϕ, θ, ψ, to go from $0 \rightarrow 3$

Euler Angles

step I: rotate by ϕ about z_{0}

Euler Angles

step 2: rotate by θ about y_{1}

Euler Angles

$$
\text { step } 3 \text { : rotate by } \psi \text { about } z_{2}
$$

Euler Angles to Rotation Matrices

(post-multiply using the basic rotation matrices)

$$
\begin{aligned}
\mathbf{R} & =\mathbf{R}_{z, \phi} \mathbf{R}_{y, \theta} \mathbf{R}_{z, \psi} \\
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
\end{aligned}
$$

Roll, Pitch, Yaw Angles

defined as a set of three angles about a fixed reference

Roll, Pitch, Yaw Angles to Rotation Matrices

(pre-multiply using the basic rotation matrices)
$\mathbf{R}=\mathbf{R}_{z, \phi} \mathbf{R}_{y, \theta} \mathbf{R}_{x, \psi}$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\psi} & -s_{\psi} \\
0 & s_{\psi} & c_{\psi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & c_{\phi} s_{\theta} s_{\psi}-s_{\phi} c_{\psi} & s_{\phi} s_{\psi}+c_{\phi} s_{\theta} c_{\psi} \\
s_{\phi} c_{\theta} & s_{\phi} s_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} c_{\psi}-c_{\phi} s_{\psi} \\
-s_{\theta} & c_{\theta} s_{\psi} & c_{\theta} c_{\psi}
\end{array}\right]
\end{aligned}
$$

Axis/Angle Representation

rotation by an angle about an axis in space

Axis/Angle Representation

any rotation matrix can be represented this way!

$$
\begin{aligned}
& R=R_{k, \theta} \\
& \theta=\cos ^{-1}\left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right) \quad k=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
& \left.x_{0}\right) \\
& 2 y_{0}
\end{aligned}
$$

Talk to the person next to you.

 Explain one of the three parameterization approaches to your partner, then switch. Talk about the third one together.

Homogeneous Transformations

Rigid Motion

a rigid motion couples pure translation with pure rotation

a homogeneous transformation is a matrix representation of rigid motion, defined as

$$
\mathbf{H}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{d} \\
\mathbf{0} & 1
\end{array}\right]
$$

where \mathbf{R} is the 3×3 rotation matrix, and \mathbf{d} is the 3×1 translation vector

$$
\mathbf{H}=\left[\begin{array}{cccc}
n_{x} & s_{x} & a_{x} & d_{x} \\
n_{y} & s_{y} & a_{y} & d_{y} \\
n_{z} & s_{z} & a_{z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

the homogeneous representation of a vector is formed by concatenating the original vector with a unit scalar

$$
\mathbf{P}=\left[\begin{array}{c}
\mathbf{p} \\
1
\end{array}\right]
$$

where \mathbf{p} is the 3 xl vector

$$
\mathbf{P}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]
$$

Homogeneous Transformations

rigid body transformations are accomplished by pre-multiplying by the homogenous transform

$$
\mathbf{P}^{0}=\mathbf{H}_{1}^{0} \mathbf{P}^{1}
$$

\{example with quadrotor model\}

composition of multiple transforms is the same as for rotation matrices:
post-multiply when successive rotations are relative to intermediate frames

$$
\mathbf{H}_{2}^{0}=\mathbf{H}_{1}^{0} \mathbf{H}_{2}^{1}
$$

pre-multiply when successive rotations are relative to the first fixed frame

$$
\mathbf{H}_{2}^{0}=\mathbf{H} \mathbf{H}_{1}^{0}
$$

Composition (intermediate frame)

$$
\mathbf{H}_{2}^{0}=\mathbf{H}_{1}^{0} \mathbf{H}_{2}^{1}=\left[\begin{array}{cc}
\mathbf{R}_{1}^{0} & \mathbf{d}_{1}^{0} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{2}^{1} & \mathbf{d}_{2}^{1} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R}_{2}^{0} & \mathbf{R}_{1}^{0} \mathbf{d}_{2}^{1}+\mathbf{d}_{1}^{0} \\
\mathbf{0} & 1
\end{array}\right]
$$

Inverse Transform

$$
\mathbf{H}_{0}^{1}=\left[\begin{array}{cc}
\mathbf{R}_{0}^{1} & \mathbf{d}_{0}^{1} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\left(\mathbf{R}_{1}^{0}\right)^{\top} & -\left(\mathbf{R}_{1}^{0}\right)^{\top} \mathbf{d}_{1}^{0} \\
\mathbf{0} & 1
\end{array}\right]
$$

Homework

Homework 1:
Rigid Motions and Homogeneous Transformations
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D
September 11, 2012
This assignment is due on Tuesday, September 18, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Wednesday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.
You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Book Problems (30 points)
The first set of problems is from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple together all pages of your assignment.

1. SHV 2-10, page 66 - Sequence of Rotations (5 points

Please specify each element of each matrix in symbolic form and show the order in which the matrices should be multiplied; as stated in the problem, you do not need to perform the matrix multiplication.
2. SHV 2-14, page 67 - Rotating a Coordinate Frame (5 points)

Sketch the initial, intermediate, and final frames by reading the text in the problem. Then find R in two ways: by inspection of your sketch and by calculation. Check your solutions against one another.
3. SHV 2-23, page 68 - Axis/Angle Representation (10 points)
4. SHV $2-39$, page 70 - Homogeneous Transformations (10 points)

Treat frame $o_{2} x_{2} y_{2} z_{2}$ as being located at the center of the cube's bottom surface (as drawn in Figure 214), not at the center of the cube (as stated in the problem).

MATLAB Programming (30 points)

This class will use MAILAB to analyze and simulate robotic systems and also to control real robots. While Professor Kuchenbecker loves MATLAB, she recognizes that it can be difficult to use at the start. Even if if you feel lost or frustrated.
Your task for this question is to update a provided MATLAB script so that it animates the movement of rectangular block that was moved in a specific way. The motion was captured on video, and the positions and orientations of the block were recorded over time using a Ascension TrakStar magnetic motion tracking
system that includes a sensor located inside the block.

Flying Box by PUT YOUR NAME HERE

Programming Homework Tips:

I.Write out your approach before sitting down to program.
2. Start early to give yourself time to figure things out.

Questions?

