MEAM 520

Rotation Matrices

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Last week I was at UC Berkeley in California for a DARPA BOLT Activity E Evaluation on "Perceptually Grounded Robotic Language Acquisition"

Center Tap Squeeze Static Hold Slow Slide Fast Slide

Course Logistics

- Main points were explained during Lecture I
- Those slides are posted on Lore
- Class website is hosted on Lore: join.lore.com/8GMYVB
- Barring technical glitches, lecture slides and audio will be recorded and posted to Blackboard.
- There was a glitch during Lecture I. Hopefully today's attempt is more successful.
- You should have the book, and ideally you should have read pagesI-I9.
-What questions do you have?

How do you contact me?

Email: kuchenbe@seas.upenn.edu
Office: 224 Towne Building
Office Phone: (2I5) 573-2786
Office Hours: Tuesday 1:30-2:30 p.m.
Thursday I:30-2:30 p.m.

Caveat

This is my first time teaching this class.
I sat through MEAM 520 in Spring 2012 and will largely be following the way Dr. Fiene taught the course.

I will do my best, but things may not be perfectly organized; we will all be learning and adapting together.

We're going to need some math.

This week

Chapter 2 in SHV

Rigid Motions and Homogeneous Transformations

Appendix B in SHV

Linear Algebra

Key Linear Algebra Concepts

vector

transpose operator
scalar product (dot product) between two vectors norm (length) of a vector
matrix
matrix multiplication

Questions?

Representing Positions

The following slides are adapted from those created by Jonathan Fiene for MEAM 520 in Spring 2012

Rotation Matrices

Frame notation

The reference frame is designated using superscript notation

to perform algebraic manipulation, vectors must be expressed in the same frame or in parallel frames

Planar Coordinate Rotations

project frame I into frame 0

$$
\begin{aligned}
& \mathbf{x}_{1}^{0}=\left[\begin{array}{l}
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0}
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& \mathbf{y}_{1}^{0}=\left[\begin{array}{l}
y_{1} \cdot x_{0} \\
y_{1} \cdot y_{0}
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
\end{aligned}
$$

which can be expressed as a rotation matrix

$$
\mathbf{R}_{1}^{0}=\left[\begin{array}{ll}
\mathbf{x}_{1}^{0} & \mathbf{y}_{1}^{0}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

the inverse of which is the matrix transpose

$$
\mathbf{R}_{0}^{1}=\left(\mathbf{R}_{1}^{0}\right)^{\top}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{R}_{1}^{0}=\left[\begin{array}{ccc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right] \\
\mathbf{R}_{x, \theta}=\left[\begin{array}{ccr}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
\mathbf{R}_{y, \theta}=\left[\begin{array}{ccr}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
\end{gathered}
$$

The basic rotation matrices define rotations about the three coordinate axes

$$
\mathbf{R}_{z, \theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotational Transformations

For pure coordinate rotation, a point in frame I can be expressed in frame 0 using the rotation matrix

$$
\mathbf{v}_{p}^{0}=\mathbf{R}_{1}^{0} \mathbf{v}_{p}^{1}
$$

The rotation matrix can also be used to perform rotations on vectors

$$
\mathbf{p}_{a}^{0}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
\mathbf{p}_{b}^{0}=\mathbf{R}_{z, \theta} \mathbf{p}_{a}^{0}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Rotation matrices serve three purposes (p. 47 in SHV):
I. Coordinate transformation relating the coordinates of a point p in two different frames
2. Orientation of a transformed coordinate frame with respect to a fixed frame
3. Operator taking a vector and rotating it to yield a new vector in the same coordinate frame.

Homework

Homework 1:
Rigid Motions and Homogeneous Transformations
MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D
September 11, 2012
This assignment is due on Tuesday, September 18, by 5:00 p.m. sharp. You should aim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it in to Professor this document. Late submissions of either or both parts will be accepted until 5:00 p.m. on Wednesday, but they will be penalized by 25%. After that deadline, no further assignments may be submitted.
You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you write down should be your own work, not copied from a peer or a solution manual.

Book Problems (30 points)
The first set of problems is from the textbook, Robot Modeling and Control by Spong, Hutchinson, and Vidyasagar (SHV). Please follow the extra clarifications and instructions when provided. Write in pencil, show your work clearly, box your answers, and staple together all pages of your assignment.

1. SHV 2-10, page 66 - Sequence of Rotations (5 points

Please specify each element of each matrix in symbolic form and show the order in which the matrices should be multiplied; as stated in the problem, you do not need to perform the matrix multiplication.
2. SHV 2-14, page 67 - Rotating a Coordinate Frame (5 points)

Sketch the initial, intermediate, and final frames by reading the text in the problem. Then find R in two ways: by inspection of your sketch and by calculation. Check your solutions against one another.
3. SHV 2-23, page 68 - Axis/Angle Representation (10 points)
4. SHV $2-39$, page 70 - Homogeneous Transformations (10 points)

Treat frame $o_{2} x_{2} y_{2} z_{2}$ as being located at the center of the cube's bottom surface (as drawn in Figure 214), not at the center of the cube (as stated in the problem).

MATLAB Programming (30 points)

This class will use MAILAB to analyze and simulate robotic systems and also to control real robots. While Professor Kuchenbecker loves MATLAB, she recognizes that it can be difficult to use at the start. Even if if you feel lost or frustrated.
Your task for this question is to update a provided MATLAB script so that it animates the movement of rectangular block that was moved in a specific way. The motion was captured on video, and the positions and orientations of the block were recorded over time using a Ascension TrakStar magnetic motion tracking
system that includes a sensor located inside the block.

Flying Box by PUT YOUR NAME HERE

Session I: Thursday, 9/I3:6-8pm
Session I: Saturday, 9/I5: 3-5pm
Session 2: Thursday, 9/20: 6-8pm

Session 2: Saturday, 9/22: 3-5pm
email jmarcus@seas.upenn.edu to sign up

MATLAB

Free online tutorial: http://www.mathworks.com/academia/ student_center/tutorials/mltutorial_launchpad.html

Questions?

