MEAM 520 Rotation Matrices

Katherine J. Kuchenbecker, Ph.D.

General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania

Lecture 2: September 11, 2012

Last week I was at UC Berkeley in California for a DARPA BOLT Activity E Evaluation on "Perceptually Grounded Robotic Language Acquisition"

Center Tap Squeeze Static Hold Slow Slide Fast Slide

- Main points were explained during Lecture 1
- Those slides are posted on Lore
- Class website is hosted on Lore: join.lore.com/8GMYVB
- Barring technical glitches, lecture slides and audio will be recorded and posted to Blackboard.
- There was a glitch during Lecture 1. Hopefully today's attempt is more successful.
- You should have the book, and ideally you should have read pages I-19.
- What questions do you have?

How do you contact me?

Email: kuchenbe@seas.upenn.edu

Office: 224 Towne Building

Office Phone: (215) 573-2786

Office Hours: Tuesday 1:30 – 2:30 p.m. Thursday 1:30 – 2:30 p.m.

This is my first time teaching this class.

I sat through MEAM 520 in Spring 2012 and will largely be following the way Dr. Fiene taught the course.

I will do my best, but things may not be perfectly organized; we will all be learning and adapting together.

We're going to need some math.

Chapter 2 in SHV

Rigid Motions and Homogeneous Transformations

Appendix B in SHV

Linear Algebra

Key Linear Algebra Concepts

vector

transpose operator

scalar product (dot product) between two vectors

norm (length) of a vector

matrix

matrix multiplication

Questions ?

Representing Positions

The following slides are adapted from those created by Jonathan Fiene for MEAM 520 in Spring 2012

Rotation Matrices

The reference frame is designated using **superscript** notation

to perform algebraic manipulation,

vectors must be expressed in the **same** frame or in **parallel** frames

Planar Coordinate Rotations

project frame 1 into frame 0

which can be expressed as a rotation matrix

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} \mathbf{x}_{1}^{0} & \mathbf{y}_{1}^{0} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

the inverse of which is the matrix transpose

$$\mathbf{R}_0^1 = (\mathbf{R}_1^0)^\top = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Three-Dimensional Coordinate Rotations

Rotational Transformations

For pure coordinate rotation, a point in frame I can be expressed in frame 0 using the rotation matrix

$$\mathbf{v}_p^0 = \mathbf{R}_1^0 \; \mathbf{v}_p^1$$

Rotation matrices serve three purposes (p. 47 in SHV):

- I. Coordinate transformation relating the coordinates of a point p in two different frames
- 2. Orientation of a transformed coordinate frame with respect to a fixed frame
- 3. Operator taking a vector and rotating it to yield a new vector in the same coordinate frame.

Homework I

00	concon des	chabus v v -	and mobile	aloutier	flying_bo		tino.			
		status x, y, z				quality, 2.694		0	4	1347328434.211
Sensor1:	0x0000	0.312	8.886	-15.579	85.703		-173.770	0	4	
Sensor1:	0x0000	0.312	8.881	-15.579	85.703	2.687	-173.784	0	4	1347328434.228
Sensor1:	0x0000	0.312	8.873	-15.579	85.696	2.673	-173.798	0	4	1347328434.244
Sensor1:	0x0000	0.312	8.868	-15.579	85.703	2.645	-173.820	0	4	1347328434.261
Sensor1:	0x0000	0.312	8.864	-15.583	85.718	2.624	-173.841	0	4	1347328434.277
Sensor1:	0x0000	0.312	8.859	-15.583	85.746	2.603	-173.862	0	4	1347328434.294
Sensor1:	0x0000	0.312	8.855	-15.587	85.788	2.589	-173.897	0	4	1347328434.315
Sensor1:	0×0000	-0.237	7.163	-13.179	85.729	0.776	-174.592	0	3	1347328468.754
Sensor1:	0×0000	-0.237	7.163	-13.175	85.729	0.776	-174.592	0	3	1347328468.763
Sensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.783	-174.592	0	3	1347328468.775
Sensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.783	-174.592	0	3	1347328468.783
Sensor1:	0×0000	-0.233	7.163	-13.175	85.729	0.790	-174.599	0	3	1347328468.800
Sensor1:	0×0000	-0.229	7.163	-13.175	85.729	0.797	-174.606	0	3	1347328468.817
Sensor1:	0×0000	-0.229	7.163	-13.175	85.729	0.804	-174.606	0	3	1347328468.833
Sensor1:	0×0000	-0.224	7.159	-13.175	85.722	0.811	-174.613	0	3	1347328468.850
Sensor1:	0x0000	-0.220	7.154	-13.179	85.721	0.825	-174.613	0	3	1347328468.867
Sensor1:	0×0000	-0.215	7.150	-13.179	85.728	0.846	-174.627	0	3	1347328468.883
Sensor1:	0×0000	-0.211	7.146	-13.184	85.736	0.860	-174.641	0	3	1347328468.900
Sensor1:	0x0000	-0.207	7.137	-13.188	85.764	0.867	-174.662	0	3	1347328468.917
Sensor1:	0x0000	-0.202	7.132	-13.188	85.778	0.874	-174.676	0	3	1347328468.933
Sensor1:	0x0000	-0.202	7.128	-13.192	85.792	0.874	-174.683	0	3	1347328468.950
Sensor1:	0x0000	-0.198	7.124	-13.192	85.799	0.874	-174.690	0	3	1347328468.967
Sensor1:	0x0000	-0.198	7.119	-13.192	85.813	0.874	-174.697	0	3	1347328468.983
Sensor1:	0x0000	-0.198	7.115	-13.197	85.820	0.867	-174.704	0	3	1347328469.000
Sensor1:	0x0000	-0.193	7.110	-13.197	85.827	0.860	-174.711	0	3	1347328469.017
Sensor1:	0x0000	-0.189	7.106	-13.201	85.834	0.846	-174.711	0	3	1347328469.033
Sensor1:	0x0000	-0.189	7.102	-13.201	85.841	0.825	-174.711	ø	3	1347328469.050
Sensor1:	0x0000	-0.185	7.097	-13.201	85.855	0.804	-174.711	õ	š	1347328469.067
Sensor1:	0x0000	-0.185	7.093	-13.201	85.869	0.783	-174.697	õ	ă	1347328469.083
Sensor1:	0x0000	-0.185	7.088	-13.201	85.876	0.762	-174.690	õ	ă	1347328469.100
Sensor1:	0x0000	-0.185	7.088	-13.201	85.883	0.748	-174.683	õ	3	1347328469.117
Sensor1:	0x0000	-0.185	7.088	-13.201	85.883	0.741	-174.676	õ	3	1347328469.133
Sensor1:	0x00000	-0.189	7.088	-13.201	85.876	0.734	-174.669	0	3	1347328469.150
Sensor1:	0x00000	-0.189	7.088	-13.201	85.869	0.727	-174.662	ø	3	1347328469.167
								0		
Sensor1:	0x0000	-0.189	7.088	-13.201	85.862	0.720	-174.655	0	3	1347328469.183
Sensor1:	0x0000	-0.189	7.088	-13.201	85.848	0.706	-174.655	0	3	1347328469.200
Sensor1:	0x0000	-0.193	7.088	-13.201	85.813	0.692	-174.655	0	3	1347328469.217
Sensor1:	0x0000	-0.193	7.093	-13.206	85.715	0.650	-174.655	0	3	1347328469.233
Sensor1:	0x0000	-0.198	7.097	-13.210	85.497	0.581	-174.635	0	3	1347328469.250
Sensor1:	0x0000	-0.193	7.106	-13.219	85.062	0.490	-174.592	0	3	1347328469.267
Sensor1:	0×0000	-0.180	7.110	-13.228	84.437	0.427	-174.536	0	3	1347328469.283
Sensor1:	0×0000	-0.154	7.110	-13.236	83.650	0.399	-174.536	0	3	1347328469.300
Sensor1:	0×0000	-0.114	7.106	-13.254	82.409	0.399	-174.614	0	4	1347328469.321
Sensor1:	0×0000	-0.083	7.102	-13.267	81.540	0.420	-174.677	0	4	1347328469.333
Sensor1:	0×0000	-0.022	7.088	-13.285	79.896	0.476	-174.761	0	4	1347328469.354

00	Editor - /Users/kuchenbe/Documents/teaching/meam 520/assignments/01 transformations/matlab/flying_box_starter.m	
File Edi	it Text Go Cell Tools Debug Desktop Window Help	
* *	\sim 1 1 1 1 1 1 1 1 1 1	
) • 🗄 🖷	$-1.0 + \div 1.1 \times \% \% 0$	
1	<pre>%% flying_box_starter.m</pre>	
2 3	8	
	% This Matlab script provides the starter code for the flying box	
4	<pre>% problem on Homework 1 in MEAM 520 at the University of Pennsylvania. % The original was written by Professor Katherine J. Kuchenbecker in</pre>	
5 6	<pre>% September of 2012. Students will modify this code to create their own</pre>	
7	<pre>% script. Email kuchenbe@seas.upenn.edu with questions.</pre>	
8	8	
9	<pre>% Student Name:</pre>	
10	8	T I I I I I I I I I I I I I I I I I I I
11	% Change the name of this file to replace "starter" with your PennKey. For	
12	<pre>% example, Professor Kuchenbecker's script would be visualize_kuchenbe.m</pre>	
13		
14	88 SETUP	
15 16	<pre>% Delete all variables from our workspace.</pre>	
17 -	clear	
18	Cicai	
19	% Load the TrakStar data recorded during the movie.	
20	% This MATLAB data file includes time histories of the x, y, and z	
21	<pre>% coordinates in inches, as well as time histories of the azimuth,</pre>	
22	<pre>% elevation, and roll angles in degrees.</pre>	
23 -	<pre>load flying_box;</pre>	
24		
25	<pre>% Open figure 1 and clear it to get ready for plotting.</pre>	
26 - 27 -	figure(1) clf	
27 - 28	011	
29	%% DEFINITIONS	
30		
31	% We need to keep track of three frames in this code.	
32	8	
33	% Frame 0 is the frame of the camera's view, with x positive to the right,	
34	% y positive straight back, and z positive up. The is the base frame, and	
35	% it's what we plot in. Its origin coincides with the origin of frame 1.	
36	8 9 Examp 1 is the frame of the ExakCtor transmitter, which sits on the deck	M
37 38	<pre>% Frame 1 is the frame of the TrakStar transmitter, which sits on the desk.</pre> % It has a positive straight out a positive to the left and z positive	A
38	% It has x positive straight out, y positive to the left, and z positive	
	script	Ln 24 Col 1

Session I: Thursday, 9/13:6-8pm Session I: Saturday, 9/15: 3-5pm Session 2: Thursday, 9/20: 6-8pm Session 2: Saturday, 9/22: 3-5pm email <u>imarcus@seas.upenn.edu</u> to sign up

MATLAB

Free online tutorial: http://www.mathworks.com/academia/ student_center/tutorials/mltutorial_launchpad.html

Questions ?