3.  PRESENTING EXPERIMENTAL DATA

3.1 INTRODUCTION

Some form of analysis must be performed on all experimental data. The analysis may be a
simple verbal appraisal of the test results, or it may take the form of a complex theoretical
analysis of the errors involved in the experiment and matching of the data with fundamental
physical principles. Even new principles may be developed in order to explain some unusual
phenomenon. Our discussion in this chapter will consider the analysis of data to determine
errors, precision, and general validity of experimental measurements. The correspondence of the
measurements with physical principles is another matter, quite beyond the scope of our
discussion. Some methods of graphical data presentation will also be discussed. The interested
reader should consult the monograph by Wilson [2] for many interesting observations concerning
correspondence of physical theory and experiment.

The experimentalist should always know the validity of data. The automobile test engineer must
know the accuracy of the speedometer and gas gage in order to express the fuel-economy
performance with confidence. A nuclear engineer must know the accuracy and precision of
many instruments just to make some simple radioactivity measurements with confidence. In
order to specify the performance of an amplifier, an electrical engineer must know the accuracy
with which the appropriate measurements of voltage, distortion, etc., have been conducted.
Many considerations enter into a final determination of the validity of the results of experimental
data, and we wish to present some of these considerations in this chapter.

Errors will creep into all experiments regardless of the care that is exerted. Some of these errors
are of a random nature, and some will be due to gross blunders on the part of the experimenter.
Bad data due to obvious blunders may be discarded immediately. But what of the data points
that just "look" bad? We cannot throw out data because they do not conform with our hopes and
expectations unless we see something obviously wrong. If such "bad" points fall outside the
range of normally expected random deviations, they may be discarded on this basis of some
consistent statistical data analysis. The key here is "consistent". The elimination of data points
must be consistent and should not be dependent on human whims and bias based on what "ought
to be". In many instances it is very difficult for the individual to be consistent and unbiased. The
pressure of a deadline, disgust with previous experimental failures, and normal impatience all
can influence rational thinking processes. However, the competent experimentalist will strive to
maintain consistency in the primary data analysis. Our objective in this chapter is to show how
one may go about maintaining this consistency.

3.2 CAUSES AND TYPES OF EXPERIMENTAL ERRORS

In this section we present a discussion of some of the types of errors that may be present in
experimental data and begin to indicate the way these data may be handled. First, let us
distinguish between single-sample and multi-sample data.

Single-sample data are those in which some uncertainties may not be discovered by repetition.
Multi-sample data are obtained in those instances where enough experiments are performed so



that the reliability of the results can be assured by statistics. Frequently, cost will prohibit the
collection of multi-sample data, and the experimenter must be content with single-sample data
and prepared to extract as much information as possible from experiments. The reader should
consult Refs [1-3] for further discussion on this subject, but we state a simple example at this
time. If one measures pressure with a pressure gage and a single instrument is the only one used
for the entire set of observations, then some of the error that is present in the measurement will
be sampled only once no matter how many times the reading is repeated. Consequently, such as
experiment is a single-sample experiment. On the other hand, if more than one pressure gage is
used for the same total set of observations, we might say that a multi-sample experiment has
been performed. The number of observations will then determine the success of this multi-
sample experiment in accordance with accepted statistical principles.

The magnitude of an experimental error is ultimately unknown. If the experimenter knows what
the error was, he or she would correct it and it would no longer be an error. In other words, the
real errors in experimental data are those factors that are always vague to some extent and carry
some amount of uncertainly. Our task is to determine just how uncertain a particular observation
may be and to devise a consistent way of specifying the uncertainty in analytical form. A
reasonable definition may be taken as the possible range that error may have. This uncertainty
may vary a great deal depending upon the circumstances of the experiment. Perhaps it is better
to speak of experimental uncertainty instead of experimental error because of magnitude of an
error is always uncertain. Both terms are used in practice, however, so the reader should be
familiar with the meaning attached to the terms and the ways that they relate to each other.

At this point, we may mention some of the types of errors that may cause uncertainty in an
experimental measurement. First, there can always be those gross blunders in apparatus or
instrument construction that may invalidate the data. Hopefully, the careful experimenter will be
able to eliminate most of these errors. Second, there may be certain fixed errors that will cause
repeated readings to be in error by roughly the same amount but for some unknown reason.
These fixed errors are sometimes called systematic errors. Third, there are the random errors,
which may be caused by personal fluctuations, random mechanical and electronic fluctuations in
the apparatus or instruments, various influences of friction, etc. These random errors usually
follow a certain statistical distribution, but not always. In many instances it is very difficult to
distinguish between fixed errors and random errors.

The experimentalist may sometimes use theoretical methods to estimate the magnitude of a fixed
error. For example, consider the measurement of the temperature of a hot gas stream flowing in
a duct with a mercury-in-glass thermometer. It is well known that heat may be conducted from
the stem of the thermometer into the surrounds. In other words, the fact that part of the
thermometer is exposed to the surroundings at a temperature different from the gas temperature
to be measured may influence the temperature of the stem of the thermometer. Therefore, the
temperature we read on the thermometer is not the true temperature of the gas, and it will not
make any difference how many readings are taken we shall always have an error resulting from
the heat-transfer condition of the stem of the thermometer. This is fixed error, and its magnitude
may be estimated with theoretical calculations based upon known heat transfer processes and
thermal properties of the gas and the glass thermometer.



3.3 ERROR ANALYSIS ON A COMMONSENSE BASIS

We have already noted that it is somewhat more explicit to speak of experimental uncertainty
rather than experimental error. Suppose that we have satisfied ourselves with the uncertainty in
some basic experimental measurements, taking into consideration such factors as instrument
accuracy, competence of the using the instruments, etc. Often, the primary measurements must
be combined to calculate a particular result that is desired. We shall be interested in knowing the
uncertainty in the final result due to the uncertainties in the primary measurements. This may be
done by a commonsense analysis of the data, which may take many forms. To find the worst-
case error, all the errors in the primary measurements are combined in the most detrimental way.
Consider the calculation of electric power from

P=EI
where E (voltage) and I (current) are measured as

E=100V=x 2V
I=10A= 02A

The nominal value of the power is 100 x 10 =1000 W. By taking the worst possible variations in
voltage and current, we could calculate.

Pmax = (100 + 2)(10 + 0.2) = 1040.4 W
Prnin = (100 - 2)(10 - 0.2) = 960.4 W

Thus, using this method of calculation, the uncertainty in the power is +4.04 percent, -3.96
percent. It is quite unlikely that the power would be in error by these amounts because the
voltmeter variations would probably not correspond with the ammeter variations. When the
voltmeter reads an extreme "high," there is no reason why the ammeter must also read an
extreme "high" at that particular instant; indeed, this combination is most unlikely.

The simple calculation applied to the electric-power equation above is a useful way of inspecting
experimental data to determine what errors could result in a final calculation; however, the test is
too severe and should be used only for rough inspections of data. It is significant to note,
however, that if the results of the experiments appear to be in error by more than the amounts
indicated by the above calculation, then the experimenter had better examine the data more
closely. In particular, the experimenter should look for certain fixed errors in the instrumentation
(such as the reading on the bathroom scale when no weight is on it), which may be eliminated by
applying either theoretical or empirical corrections.

As another example we might conduct an experiment where heat is added to a container of
water. If our temperature instrumentation should indicate a drop in temperature of the water, our
good sense (i.e., knowledge of the laws of nature) would tell us that something is wrong and the
data point(s) should be thrown out. No sophisticated analysis procedures are necessary to
discover this kind of error.



3.4 UNCERTAINTY ANALYSIS

A method of estimating uncertainty in experimental results has been presented by Kline and
McClintock [3]. The method is based on a careful specification of the uncertainties in the
various primary experimental measurements. For example, a certain pressure reading might be
expressed as

p =100 kN/m2 = 1 kN/m2

When the plus or minus notation is used to designate the uncertainty, the person making this
designation is stating the degree of accuracy with which he or she believes the measurement has
been made. We may note that this specification is in itself uncertain because the experimenter is
naturally uncertain about the accuracy of these measurements.

If a very careful calibration of an instrument has been performed recently, with standards of very
high precision, then the experimentalist will be justified in assigning a much lower uncertainty to
measurements than if they were performed with a gage or instrument of unknown calibration
history.

To add a further specification of the uncertainty of a particular measurement, Kline and
McClintock propose that the experimenter specify certain odds for the uncertainty. The above
equation for pressure might thus be written

p =100 kN/m2 = 1 kN/m2 (20 to 1)

In other words, the experimenter is willing to bet with 20 to 1 odds that the pressure

measurement is within = 1 kN/m2. It is important to note that the specification of such odds can
only be made by the experimenter based on the total laboratory experience.

Suppose a set of measurements is made and the uncertainty in each measurement may be
expressed with the same odds. These measurements are then used to calculate some desired
result of the experiments. We wish to estimate the uncertainty in the calculated result on the
basis of the uncertainties in the primary measurements. The result R is a given function of the
independent variables x1, X2, X3, ..., Xp. Thus,

R =R(x1, X2, X3,....,Xp) 3.1

Let w; be the uncertainty in this result and wy, wp, ..., wy be the uncertainties in the independent
variables. If the uncertainties in the independent variables are all given with same odds, then the
uncertainty in the result having these odds is given in Ref. [1] as
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If this relation is applied to the electric power relation of the previous section, the expected
uncertainty (also called the root-mean-square error) is 2.83 percent instead of 4.04 percent.

Example 3.1 The resistance of a certain size of copper wire is given as

R =Ry [l + a (7-20)]

where R, = 6Q= 0.3 percent is the resistance at 20°C, oo = 0.004°C-1+ 1 percent is the
temperature coefficient of resistance, and the temperature of the wire is 7= 30+ 1°C. Calculate
the resistance of the wire and its uncertainty.

Solution. The nominal resistance is
R =(6)[1 + (0.004)(30 - 20)] = 6.24Q

The uncertainty in this value is calculated by applying Eq. (3.2). The various terms are:

;?R =1+ a(T—20) =1 + (0.004)(30-20) = 1.04
% = RO(T—ZO) = (6)(30-20) = 60

o

R

2—T = R,a = (6)(0.004) = 0.024

w. = (6)(0.003) = 0.018¢2

wq = (0.004)(0.01) =4 x 103 °C-1
wr=1°C

Thus, the uncertainty in the resistance is

wr = [(1.04)2(0.018)2 + (60)2(4x10-5)2 + (0.024)2(1)2]1/2
=0.030522 or 0.49%

Particular notice should be given to the fact that the uncertainty propagation in the result wr
predicted by Eq. 3.2 depends on the squares of the uncertainties in the independent variables wy,.
This means that if the uncertainty in one variable is significantly larger than the uncertainties in
the other variables, say, by a factor of 5 or 10, then it is the largest uncertainty that predominates
and the others may probably be neglected.

To illustrate, suppose there are three variables with a product of sensitivity and uncertainty [(OR/
0x)wx] of magnitude 1, and one variable with a magnitude of 5. The uncertainty in the result

would be



(5 + 1+ 1+ 1*) = V28 = 529

The importance of this brief remark concerning the relative magnitude of uncertainties is evident
when one considers the design of an experiment procurement of instrumentation, etc. Very little
is gained by trying to reduce the "small" uncertainties. Because of the square propagation it is
the large ones that predominate, and any improvement in the overall experimental result must be
achieved by improving the instrumentation or technique connected with these relatively large
uncertainties. In the examples and problems that follow, both in this chapter and throughout the
book, the reader should always note the relative effect of uncertainties in primary measurements
on the final result.

The reader is cautioned to examine possible experimental errors before the experiment is
designed and conducted. Equation (3.2) may be used very effectively for such analysis, as we
shall see in the sections and chapters that follow. A further word of caution may be added here.

It is equally as unfortunate to overestimate uncertainty as to underestimate it. An underestimate
gives false security, while an overestimate may make one discard important results, miss a real
effect, or buy much too expensive instruments. The purpose of this chapter is to indicate some of
the methods for obtaining reasonable estimates of experimental uncertainty.

In the previous discussion of experimental planning we noted that an uncertainty analysis may
aid the investigator in selecting alternative methods to measure a particular experimental
variable. It may also indicate how one may improve the overall accuracy of a measurement by
attacking certain critical variables in the measurement process. The next three examples
illustrate these points.

Example 3.2 Selection of measurement method. A resistor has a nominal stated value of 10€2
+ | percent. A voltage is impressed on the resistor, and the power dissipation is to be calculated

in two different ways: (1) from P = E2/R and (2) from P = EI. In (1) only a voltage measurement
will be made, while both current and voltage will be measured in (2). Calculate the uncertainty
in the power determination in each case when the measured values of E and I are:

E=100V = 1%
I=10A= 1%
FIGURE EXAMPLE 3.2

Power measurement across a resistor.
Solution. The schematic is shown in the accompanying figure. For the first case we have

P 2E 0P E’

oFE R R R’

and we apply Eq. (3.2) to give



w;] (a)

Dividing by P = E2/R gives
w w )_2 w 12
-2 _ 4(_E + (_R b
P [ E) R) ®
Inserting the numerical values for uncertainty,

w

t = [40.01 + (0017 ] = 2.236%

For the second case we have
oP oP
— =1 — = E
oE ol

and after similar algebraic manipulation, we obtain
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Inserting the numerical values of uncertainty,

Wp _ 2 o

2 = [(001) + o1 ] = 1414%

Thus, the second method of power determination provides considerably less uncertainty than the
first method, even though the primary uncertainties in each quantity are the same. In this

example the utility of the uncertainty analysis is that it affords the individual a basis for selection
of a measurement method to produce a result with less uncertainty.

Example 3.3 Instrument selection. The power measurement in Example 3.2 is to be conducted
by measuring voltage and current across the resistor with the circuit shown in the accompanying
figure. The voltmeter has an internal resistance R,;,, and the value of R is known only
approximately. Calculate the nominal value of the power dissipated in R and the uncertainty for
the following conditions:

R =100Q (not known exactly)

Ry, = 1000Q+ 5%

I=5A=1%

E=500V = 1%



FIGURE EXAMPLE 3.3

Effect of meter impedance on measurement.

Solution. A current balance on the circuit yields

I, +1, =1
E E
-+ — =1
R R,
and
E
I, =1-—
R,
The power dissipated in the resistor is
EZ
P = EIl, = EI - —
R,
The nominal value of the power is thus calculated as
500°
P = (500)(5) - = 2250 W
1000

(a)

(b)

In terms of known quantities the power has the functional form P = f(E,I,R,,), and the derivatives

WP, 2E 0P _
IE R, al
)
oR, R,

The uncertainty for the power is now written as

R,]

2E\ E*)
Wy = [(1-—- wfi + E2w,2 + (

Inserting the appropriate numerical values gives
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1000\ _, . 4 10%)*
= |[5- —=1 5 + (25x10')}25x 10™) + {25 x —1 (2500
v [( 1000/ (53107 )25 x10%) + (25 155 (2500)
= [16 + 25 + 625]%(5)
=344 W
or
Be o 24 53,
P~ 2250

In order of influence on the final uncertainty in the power we have

1. Uncertainty of current determination
2. Uncertainty of voltage measurement
3. Uncertainty of knowledge of internal resistance of voltmeter

Comment. There are other conclusions we can draw from this example. The relative influence
of the experimental quantities on the overall power determination is noted above. But this listing
may be a bit misleading in that it implies that the uncertainty of the meter impedance does not
have a large effect on the final uncertainty in the power determination. This results from the fact
that R;,,>>R (R, = 10R). If the meter impedance were lower, say, 20092, we would find that it
was a dominant factor in the overall uncertainty. For a very high meter impedance there would
be little influence, even with a very inaccurate knowledge of the exact value of R;,. Thus, we are

led to the simple conclusion that we need not worry too much about the precise value of the
internal impedance of the meter as long as it is very large compared with the resistance we are
measuring the voltage across. This fact should influence instrument selection for a particular
application.

3.5 EVALUATION OF UNCERTAINTIES FOR COMPLICATED DATA REDUCTION

We have seen in the preceding discussion and examples how uncertainty analysis can be a useful
tool to examine experimental data. In many cases data reduction is a rather complicated affair
and is often performed with a computer routine written specifically for the task. A small
adaptation of the routine can provide for direct calculation of uncertainties when analytical
determination of the partial derivatives in Eq. (3.2) is difficult. We still assume that this equation
applies, although it could involve several computational steps. We also assume that we are able
to obtain estimates by some means of the uncertainties in the primary measurements, i.e., Wi, w2,

etc.

Suppose a set of data is collected in the variables x1, X2,....,Xy and a result calculated. At the
same time one may perturb the variables by Axy, Axp, ..., and calculate new results. Then
R(x1) =R(x1, X2,....Xn)

R(x1 + Ax1) = R(X1 + AX1, X2, ..., Xp)



R(x2) = R(X1, X2,..-.Xn)
R(x7 + Axp) = R(X1, X2 + AX2,....Xp)

For small enough values of Ax the partial derivatives can be well approximated by the finite
difference expressions

IR R(x, + AXI) - R(xl)
0x, ) Ax,

E _ R(x2 + Ax2) - R(xz)
0x, ) Ax,

and these values could be inserted in Eq. (3.2) to calculate the uncertainty in the result.

At this point we must again alert the reader to the ways uncertainties or errors of instruments are
normally specified. Suppose a pressure gage is available and the manufacturer states that it is
accurate within = 1.0 percent. This statement normally refers to percent of full scale. So a gage
with a range of 0 to 100 kPa would have an uncertainty of + 10 percent when reading a pressure
of only 10 kPa. Of course, this means that the uncertainty in the calculated result, either as an
absolute value or percentage, can vary depending on the range of operation used to make the
primary measurements. The above procedure can be used to advantage in complicated data-
reduction schemes.

A very full description of this technique and many other considerations of uncertainty analysis
are given by Moffat [4]. An example of an industry standard on uncertainty analysis is given in
Ref. [5].

Example 3.5. Calculate the uncertainty of the wire resistance in Example 3.1 using the
technique described in this section.

Solution. In Example 3.1 we have already calculated the nominal resistance at 6.24Q. We now
perturb the three variables Ry, o, and 7 by small amounts to evaluate the partial derivatives. We
shall take

AR, =0.01 Ao =1x 105 AT=0.1
Then

R(Ry + AR,) = (6.01)[1 + (0.004)(30-20)] = 6.2504

and the derivative is approximated as

R _ R(R, +AR)R _ 62504 -624 _
R, AR B 001 o

0 (]




or the same result as in Example 3.1. Similarly,
R(o + Aa) = (6.01)[1 + (0.00401)(30-20)] = 6.2406

IR Rl + Aa)-R 6.2406 - 6.24

= = = 60
da Aa 1x10°
R(T + AT) = (6)[1 + (0.004)(30.1-20)] = 6.2424
d + AT). -
9R _ R +AT)-R _ 62424 - 624 _ 0.004

ar AT 0.1

All derivatives are the same as in Example 3.1. Hence the uncertainty in R is the same, i.e.
0.03052.

3.6 GRAPHICAL ANALYSIS AND CURVE FITTING

Successful analysis of experimental data requires good understanding of the physical processes
behind the data. Unless thought through carefully, curve-plotting and cross-plotting usually
generate an excess of displays, which are confusing not only to the management or supervisory
personnel who must pass on the experiments, but sometimes even to the experimenter.

Assuming that the engineer knows what is to be examined with graphical presentations, the plots
may be carefully prepared and checked against appropriate theories. Frequently, a correlation of
the experimental data is desired in terms of analytical expression between variables that were
measured in the experiment; the easiest to plot and understand is a linear relationship. It is most
convenient, then, to try to plot the data in such a linear form, which could sometimes be
accomplished by a coordinate transformation.

Table 3.1 summarizes several different types of functions and transformations that may be used
to produce straight lines on graph paper. The graphical measurements, which may be made to
determine the various constants, are also shown. It may be remarked that the method of least
squares may be applied to all these relations to obtain the best straight line to fit the experimental
data. A number of computer software packages are available to accomplish the functional plots
illustrated in Table 3.1. See, for example, Refs. [6], [7], and [8].

Note that when using logarithmic or semilog graph paper is unnecessary to make log
calculations; the scaling of the paper automatically accomplishes this.

3.7 GENERAL CONSIDERATIONS IN DATA ANALYSIS

This chapter has considered a variety of topics: statistical analysis, uncertainty analysis, curve
plotting, least squares, etc. that arise in a variety of experimental investigations. As a summary
to this chapter let us now give an approximate outline of the manner in which one would go
about analyzing a set of experimental data.




Examine the data for consistency. No matter how hard one tries, there will always be
some data points that appear to be grossly in error. If we add heat to a container of water,
the temperature must rise, and so if a particular data point indicates a drop in temperature
for a heat input, that point might be eliminated. In other words, the data should follow
consistency with laws of nature, and points that do not appear proper in that way should
be eliminated. If very many data points fall in the category of "inconsistent," perhaps the
entire experimental procedure should be investigated for gross mistakes or
miscalculation.

Perform a statistical analysis of data where appropriate. A statistical analysis is only
appropriate when measurements are repeated several times. If this is the case, make
estimates of such parameters as standard deviation, etc.

Estimate the uncertainties in the results. We have discussed uncertainties at length.
Hopefully, these calculations will have been performed in advance and the investigator
will already know the influence of different variables by the time the final results are
obtained.

Anticipate the results from theory. Before trying to obtain correlations of the
experimental data, the investigator should carefully review the theory appropriate to the
subject and try to glean some information that will indicate the trends the results may
take. Important dimensionless groups, pertinent functional relations, and other
information may lead to a fruitful interpretation of the data.

Validate the data. The experimental investigator should make sense of the data in terms
of physical theories or on the basis of previous experimental work in the field. Certainly,
the results of the experiments should be analyzed to show how they conform to or differ
from previous investigations or standards that may be employed for such measurements.

Correlate the data. Develop the mathematical relationship between the parameter of
interest and the independently measured variables that define it. For example, the
equation Nu = cR.0-8P10-4 is the mathematical relationship between the Nusselt number

and the Reynolds and Prandtl numbers which are the independent variables sufficient to
determine it.
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