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Symbols 

(defining equations are noted in parentheses) 

Upper case 

]Lower case 

5' 

start-of-step to end-of-step transition submamx (22,23) 

derivatives of D w.r.t. step period (29) 

(26) 
damping matrix (38) 

angular momentum (A3) 
identity matrix 
link moment of inertia about its mass centre 

inertia ma& for an N-link chain (14, AM) 16 
element of M (Al@ 12 
number of chain links 

fmt radiustleg length 
transition mamx for linearised step-to-step equations (3 1) 

torque 

link velocity vector ( A V 9  

derivative of chain equilibrium angles w.r.t. slope (17, AM))-, 

distance from proximal joint to link mass centre (figure 17) 

distance from distal joint to link mass centre (figure 17) 

viscous friction coefficient (38) 

gravitational acceleration 
link length (figure 17) 

mass 

point mass at the hip joint 

leg radius of gyrationlleg length 

position vector from joint n to mass centre of linkp (figure 16) 

offset from link axis to mass cenae (figure 17) 

unit vectors (figure 17) 

eigenvalue of linearised step-to-step equations (31) 
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Greek 

a 

Subscripts 

hip half-angle at support transfer (figure 6) 
slope (figure 4) 

ratio of speeds across support transfer (5) 
link angle (figure 17) 

perturbation in 9 from the surface normal (figure 3) 

support aansfer matrix (19) 

derivative of A w.r.t. a 

(33) 
timescale parameter for the rimless wheel (2) 
dimensionless time t @ 
period of k  step 

angular speed 
frequency 

frequency of lateral rocking 

steadycycling condition 

stance ("contact") leg 
swing ("free") leg 

as in k h  step 
link indices, 1 for the contact link 

static equilibrium 

due to offset between mass centre and link axis 

January 1988 



19 May 1988 

PASSIVE DYNAMIC WALKING 

Tad McGeer 

School of Engineering Science 
Simon Fraser University 

Burnaby, British Columbia, Canada V5A 1 S6 
(TMCG@sfu.MAILNET) 

Abstract 

There exists a class of two-legged machines for which walking is a natural dynamic mode: 

Once started on a shallow slope, such a machine will settle into a steady gait quite comparable 

to human walking, without active control or energy input. Interpretation and analysis of the 

underlying physics is straighgorward; the walking cycle, its stability, and sensitivity to parame- 

ter variations are easily calculated. Experiments with a test machine verify that the passive 

walking efSect can be readily exploited in practice. While the dynamics are most clearly demon- 

strated by an unpowered machine, they also promise to make powered walkers efjicient, dex- 

trous, and easily controlled. 

1. Introduction 

1.1. Static vs Dynamic 

Research om legged Bocomotion is motivated partly by fundamental curiousity about its 

mechanics, and partly by the practical utility of machines capable of traversing uneven surfaces. 

Increasing general interest in robotics in recent years has coincided with the appearance of a 

wide variety of legged machines. A brief classification of these machines will indicate where our 

own work fits in. First one should distinguish between static and dynamic machines. The former 

maintain static equilibrium throughout their motion. This requires at least four legs, and more 

commonly six. It also imposes a speed limit, since cyclic accelerations must be limited in order 
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to minimise inertial effects. Outstanding examples of static walkers are the Odex series (Russell, 

1983) and the Adaptive Suspension Vehicle (Waldron, 1986). Dynamic machines, on the other 

hand, are more like people; they can have fewer legs than static machines, and are potentially 

faster and more dextrous. 

1.2. Dynamics vs Control 

Our interest is in dynamic walking machines, which for our purposes can be classified 

accordling to the role of active control in generating the gait. At one end of the spectrum is the 

biped walker by Mita et a1 (1984), in which the motion is generated entirely by linear feedback 

control: At the end of one step, the controller commands joint angles for the end of the next step, 

and attempts to null the errors. There is no explicit specification of the motion between these end 

conditions. Ymada, Furusho, and Sano (1985) took .an approach which also relies heavily on 

feedback, although in this case it is used to track specified joint trajectories rather than just the 

end points. Also, the stance leg is left free to rotate as an inverted pendulum, which, as we shall 

discuss, is a key element of "natural" walking. 

In Miura's (1984) machines, the basic gait is generated by active control as well, but in the 

form of a precalculated control schedule rather than feedback. Again the stance leg is left free. 

Since the precalculated control inputs cannot compensate for modelling errors and disturbances, 

small feedback corrections are used to maintain the desired walking cycle. Most significantly, 

these corrections are not applied continuously throughout the motion. Instead, the precalculated 

step is treated as a processor whose output, the end-of-step state of the machine, can be adjusted 

simply by changing the input, the beginning-of-step state. Thus the feedback controller responds 

to an error in the gait by modifying initial conditions for subsequent steps, and so over several 

steps the error is eliminated. In this paper you will see analysis of a similar process. Raibert 

(1986) has developed comparable ideas in a somewhat purer form, and applied them with great 

success to dynamic machines having from one to four legs. Actually these are classified as 

runners rather than walkers, since the machines are in free flight for part of each stride. 

All of these machines require some form of active control to generate the gait; when the 

power stops, they fall over. However, I've ordered them according to the style of implementa- 
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tion, ranging from continuous active feedback to once-per-step adjustment of an actively gen- 

erated but nevertheless fixed cycle. This paper discusses a machine at the extreme end of the 

spectrum: Gravity and natural dynamics alone generate the walking cycle, which we therefore 

call "passive walking." Active input is necessary only to modify the cycle, as in turning or 

changing speed. 

1.3. Motivation for Passive Walking 

The practical motivation for studying passive walking is, first, that it makes for mechanical 

simplicity and relatively high efficiency. (The specific resistance of our machine is somewhat 

better than 0.02 in a comfortable stride.) Second, control of speed and direction is simplified 

when one doesn't have to worry about the details of generating the gait. Moreover, the simplicity 

of the machine promotes understanding. Consider an analogy with the development of powered 

flight: The Wrights put their initial efforts into studying gliders, as did their predecessors Cayley 

and Lilienthal. Once they had a reasonable grasp of dynamics and control, adding a powerplant 

was a relatively minor modification. (In fact their engine wasn't very good for its day, but their 

other strengths led them to outstanding success.) As I'll explain, adding power to a passive 

walker involves a comparably minor modification. 

In fact, passive walkers existed long before contemporary research machines. Figure 1 

shows a biped toy which walks on shallow slopes, while rocking from side to side to raise the 

swing foot above the ground. A similar quadruped toy walks on the flat while being pulled by a 

dangling weight. Figure 1 is actually from a paper by McMahon (1984), which points out that 

human walking is also at least quasi-passive: Both physiology and physics indicate that no input 

is supplied to the leg during its swing phase. Our test machine, shown in figures 2 and 3, can be 

regarded as a two-dimensional version of the toy. It has similar dynamics in the longitudinal 

plane, but does not rock sideways. Instead on each step small motors retract the swing feet just 

far enough to clear the ground. In comparison with the toy's fully passive dynamics, our use of 

active retraction is less elegant. However, it is an expedient which allows us to concentrate on 

passive walking in the simplest two-dimensional form. (Parameters of the machine are listed in 

table 1.) 
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Table 1 
Parameters of the experimental machine 

mass of each leg 1.94kg 

leg length with foot extended, 1 0.53m 

foot radiuslleg length (R) 0.33 

radius of gyrationtleg length (rgyr) 0.32 

centre of mass heightlleg length (c) 0.63 

offset from centre of mass to leg axis ( w )  
outer leg pair 
centre leg 

Note that the values for c and w are specified using 
the convention for the stance leg, shown in figure 17. 

1.4. Outline of the Paper 

I will begin discussion of passive walking with two simple models to illustrate energetics 

and dynamics. Then I will develop an analysis of passive walking for a two-dimensional biped, 

that is, one which has no lateral motion. (Our machine is specifically prevented from lateral 

motion: It walks like a person on crutches, centre leg alternating with paired outer legs.) The 

analysis includes solution for the steady gait, and for the step-to-step stability of that gait. Once 

the theory is in hand, I will use it to study parameter variations, and to review parameter selec- 

tion for the test machine. Next I will discuss our initial experiments. The paper ends with some 

comments on developments to come, including passive foot clearance, steering, gait variation, 

and addition of power. 

2. Illustrative Contrivances 

2.1. A Rimless Wagon Wheel 

A rimless wheel, figure 4, is useful for illustrating the energetics of walking, and some con- 

cepts which appear in analysis of a biped. The wheel will roll downhill at a steady speed, with 

gravity balancing the angular momentum lost on each support transfer. The forward speed can 

May 1988 



be calculated as follows: First relate the angular speed at the start of a step (i.e. with the leg at 

8 = -010) to the speed at the end of the step (8 = Q). Next calculate the change in speed when 

support is transferred to the next leg. Then impose the condition that the process must be cyclic. 

The analysis is simplest when cast in dimensionless terms, with total mass m ,  leg length 1, and 

characteristic time providing the base units. 

We begin with equations of motion linearised about 8 = 0. This is an acceptable restriction 

for us, since the small-angle approximation is quite good in the range of comfortable walking. 

The equation of motion during the step, then, can be treated as 

o is the dimensionless timescale parameter: 

At the end of the step (say time TO), support is transferred to the next leg. This is approxi- 

mated as an instantaneous event. That is, the next leg strikes the ground in a perfectly inelastic 

collision. Then angular momentum about the point of collision is conserved. Thus immediately 

before the collision, this angular momentum is 

H -  = (cos 2a0 + r&,) m12 R- 

After the collisiom, it is simply 

H +  = (1 + r&)m12R+ (4) 
Equating these gives the ratio of angular speeds before and after the collision: 

a+ - cos 2~ + r,:,' - -  
R- 

= 1 - o2(1-cos2ao) ; r, 
1 + rg$r 

Note that the ratio tends toward unity with smaller leg separation and larger inertia. 

The walking cycle is steady if the velocity after support transfer (say a) repeats from step 

to step. Thus the steady step has the following initial and final states: 
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To solve for Q0 and TO, invoke the equation of motion (1). Its solution has the form 

8 ( ~ )  = A e a  + Be-OT (7) 
Imposing the four conditions (6) provides the four equations necessary to find Ro, TO, A ,  and B . 

The results are 

The last formula provides the information necessary for calculating the forward speed, which in 

dimensionless terms, and for small Q , is 

2Q v = -  
To 

This is plotted in figure 5 as a function of the slope. 

An additional question to be addressed is stability: If SZ is initially different from Ro, will 

the motion converge to the steady cycle? The answer, obtained by extention of this analysis, 

turns out to be yes. I will discuss stability in more detail later in the paper. 

An example will provide some feel for the motion. Take y= 0.02, 1 = 0.5m, Q = 0.3, and 

o = 0.75 (which implies q = 0.90). The corresponding speed is 0.36m I s .  This is comparable 

with the speed of a biped with the same stride and leg length (table 3 and figure 8). 

2.2. Reinventing the Wheel 

The rimless wheel is a legged machine of sorts, but its legs are not well utilised. One would 

like to eliminate all but two, by arranging for the free leg to swing forward in just the right way 

so that it can pick up the next step. Figure 6 shows a simple model which illustrates the neces- 

sary dynamics. It includes only two spokes of the wheel, each in this case having a section of 

rim, and a pin joint at the hip. 

Figure 7 is a plot of the desired motion. At the beginning of the step, the legs should have 
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opposite angles and equal speeds. (I will use subscript "C" for the stance, or "contact" leg, and 

"F" for the swing, or "free" leg; thus initial conditions for the step are eF =-ec =q ; 
QF = Qc = a>. During the step, the free leg swings ahead of the stance leg; the step ends when 

they have exchanged angles. (Note that while in this model the "free" foot remains tangent to 

the ground throughout the swing, in practice it is kept clear of the ground - by lateral rocking in 

the toys, and by active retraction in our test machine.) If as the angles reach +CQ the speeds of 

the legs happen to be exactly equal, then support can just roll from one rim to the next without 

any change in angular momentum. Thus the cycle can repeat, without loss of energy. 

Analysis of the cycle is simple if the hip mass is much larger than the leg mass and is con- 

centrated at the hip. In that case the stance leg is not affected by the motion of the swing leg, 

and it becomes just a section of wheel rolling at constant speed. In turn, therefore, since the hub 

is not accelerated, the swing leg is an unforced pendulum. Then the period of the step is just the 

time required for a sinusoid, as in figure 7, to swing from some initial angle and speed to the 

opposite angle and the same speed. This turns out to satisfy 

sin COFTO = -- (I + cos C O ~ T ~ )  3 WFTO = 4.058 2 (1 1) 

Thus the step period is about 213 the pendulum period of the swing leg. This conclusion 

involves the smadl-angle approximation, but apart from that, notice that the period is independent 

of the hip half-angle %. So according to (lo), changing the forward speed involves a change not 

in timing, but rather in amplitude, of the natural walking cycle. Thus a synthetic wheel, like an 

ordinary (albeit frictionless) wheel, can roll at arbitrary speed on a flat surface. Since the 

machine is equally comfortable at all speeds, it is neutrally stable at any one speed. 

We will now delve into analysis of the more general biped of figure 3. The modelling is 

somewhat more complicated than in these two introductory examples, but you will see similar 

mechanisms at work in the results (figures 8-13). 
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3. General Two-dimensional Biped Analysis 

3.1. Layout of a Two-dimensional Biped 

Our general biped (figure 3) offers much more flexibility in parameter selection that the 

simple synthetic wheel. An important new feature is smaller feet. They remain circular in sec- 

tion, but their radius need not be equal to the leg length. Smaller radius affects both kinematics 

and dynamics; the point to note about kinematics is that both legs are in contact only when 

Oc = kgF. Therefore, provided the swing foot is lifted briefly as the legs pass through the verti- 

cal, support transfer will occur at the desired end-of-step point as shown in figure 7. (For the syn- 

thetic wheel support could be transferred with the legs at any angle.) For the purposes of this 

analysis one needn't address how foot clearance is arranged, except to impose the condition that 

it should not entail a significant change in leg inertia. 

The model for support transfer remains an impulsive inelastic collision, as for the rimless 

wheel. At first we had some doubt about the validity of this approximation, particularly because 

the feet might slip. As a preventative measure we have used roughened rubber soles in the feet of 

the test machine. These don't appear to slip at all, and support transfer is certainly signalled by a 

very impulsive noise. There are discrepancies between the predicted and measured gaits which 

may be due to somewhat elastic support transfer, but the impulsive model is certainly a good 

approximation. 

In its simplest form, the "general" biped is fully specified by only three parameters: dimen- 

sionless foot radius R , centre of mass height c , and leg radius of gyration rHr.  A more elaborate 

model also provides for mass centres offset from the leg axis, for mismatch between the legs, for 

springs and dampers, and for a "payload" in the form of a point mass at the hip. I will explore the 

effect of each of these parameters on the walking cycle. The payload requires an explanatory 

comment: Although a useful payload certainly would nor be a point mass at the hip, it would 

appear as such in the equations of motion so long as it did not rotate. That condition is reason- 

able; most payloads wouldn't be very useful otherwise! Again for purposes of this analysis one 

need not address how rotation would be prevented, although one can imagine using spring 

suspension, active control, or even a spin stabiliser. 
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3.2. Analytical Procedure 

For a given parameter set, and a given slope, one would expect (at most) a single steady 

gait. The procedure for calculating the gait is as follows: 

1. Derive linearised equations for motion during the step, and "exact" equations for the 
change is leg speeds at support transfer. 

2. Solve the linearised equations between the start- and end-of-step. 
3. Combine with the support transfer equations to get the change in state from start- 

of-step to start-of-step. 
4. Impose the condition of cyclic repetition from step to step, and so solve for the 

steady gait. 
5. Ifthere is a solution, assess stabilit using ste -to-step equations linearised for small 

perturbations on the steady cycle. ? Some stea g y gaits are unstable!) 

3.3. Equations Relating Start-of-step to End-of-step 

Derivation of the equations of motion is straightforward, but sufficiently lengthy that it is 

best left for the appendix. The equations are simply those of a 2D open chain, with the only 

unusual feature being the kinematics of rolling support. The state variables are 

Note that 0 = 0 is by definition normal to the surface, and hence at angle y to the vertical. The 

reference state for linearisation is resting with Oc = 0 and OF = x. The linearised equations of 

motion then have the form 

dd + K A ~  = K A ~ ~ ~  M ,  (14) 
This is a linear system in standard form; the solution for the end-of-step state is 

f a ( l t )  = ~ n e  (A& - A ~ S E )  + (16) 

Agk and are the conditions at the start of the kth step. The D matrices are functions of the 

period of the step, g . 

The machine has a position of static equilibrium at 
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A& is nonzero if the mass centre of either leg is offset from the leg axis. Apart from that effect, 

you might expect the equilibrium position to be legs-vertical regardless of the slope. In that case 

2 would have elements (-1, -1). Actually, though, if the foot radius is nonzero, b; has larger 

magnitude: The stance leg must be inclined backward to put the machine's centre of mass over 

the point of support. In any case, the static equilibrium is unstable unless the feet are "large", that 

is, with centre of curvature above the centre of mass. 

3.4. Equations for Support Transfer 

The two, equations for support transfer emerge from the equations of motion, and so are 

also derived in appendix A. They simply state conservation of angular momentum about two 

points: of the whole system, about the point of collision, and of the trailing leg, about the hip. 

These equations have the form 

M + C I ~ + ~  = M-BR*) (18) 

Note that in the small-angle equations of motion one can neglect the variation in the inertia 

matrix M with leg angle; most of the "action" in those equations is in the state vector. In sup- 

port transfer, however, the whole effect lies in the geometry, so here the inertia matrices must be 

evaluated exactly for the hip half-angle at contact, a k + l .  

Solving for the post-transfer speeds gives 

3.5. Start-of-step to Start-of-step Equations 
* 

The leg angles at the start- and end-of-step are 

With these specified the step-to-step variation in a follows directly from the equations of motion 

(14). It must satisfy both of 
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a k + l  I I - D W I ~ S E  + oer2ak (22) 

The corresponding equations for the speed vector follow from combination of (16) with the sup- 

port transfer conditions (19): 

3.6. Solution for the Steady Gait 

To solve for the steady gait, one simply imposes the conditions for cyclic repetition on the 

step-to-step equations: 

a k + l  = a k  = 01O 

st,,, = 4 = 4 (24) 

This gives 4 equations (22, 23) in 5 parameters: (y, 20, w, a,, QFo) .  Which to choose as the 

independent variable? One might think of specifying y and calculating the rest, since that's 

analogous to the way an experiment would be done. However, since the step-to-step equations 

are linear in y (in AGE), but nonlinear in TO and q, it is easier to specify one of the latter 

instead. w is the more intuitively accessible, so that seems the best choice. 

The derivation proceeds as follows: First, solve (23) for the speed vector a: 

Then substitute into the "angle" equation (22); the end result can be written as follows. Define 

D"Q,~(B) 2 Dm + D O R [ I  -ADm]-1ADR8 126) 
Then 

An equivalent form is 

With CQ specified, this is a pair of simultaneous equations for y and 20 (in D '1. Once the solution 
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is found, the speed vector follows from (25), and the steady walk is fully specified. 

We use Newton's method to solve (28) for 70. With most parameter sets a starting zo of 213 

the period of the swing leg (as suggested by (1 1) in the synthetic wheel analysis) leads to conver- 

gence after about 5 iterations, usually at a somewhat shorter step period. However, in some 

situations the iteration fails to converge, or converges to an unstable walk, when in fact a per- 

fectly good walk is there to be found. When suspicious we search "manually" for a better start- 

ing point, which in such cases usually has to be selected very carefully. 

3.7. Gait Stability Analysis 

Stability for small perturbations on the walking cycle can be assessed by linearising equa- 

tions (22,23). For small perturbations on the gait, the transition matrices D ge(zk), etc., and the 

support transfer matrix A(ak+1) can be approximated as follows: 

d 
A(ak+l) = A(%) + (ak+l- ao) o) N a o )  + VA @*+I- ao) (30) 

After substituting these into the (22, 23) and manipulating to collect terms, one is left with the 

following approximate form of the step-to-step equations: 
P -, 

6 L 

The S matrix turns out to be 

8 

S = ST' S 2  

where S 1, S 2 in turn are as follows. Define 

Then 
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The first three equations in (31) have the same form as an ordinary discrete-time linear sys- 

tem. (Note, however, that according to the fourth equation, the time between steps is specifically 

not constant.) Its eigenvalues indicate stability: If all have magnitude less than unity, then the 

walk is stable; the smaller the magnitude, the smaller the number of steps required to recover 

from a disturbance. 

If the walk is stable for small perturbations, the next question to ask is about large perturba- 

tions. For example, if the machine starts toppling from its (unstable) static equilibrium (17), will 

it "fall" into a walk? The answer is no; actually, it will fall into the floor! Thus there is only a 

finite region in state space (12, 13) from which the machine will converge to the steady gait. 

The eigenvalues of (31) indicate the depth of the well that lies within the space, but, as I'll illus- 

trate later, they don't indicate its breadth. 

Fortunately, we have not had to study the starting problem carefully. Our test machine is 

started by hand; for initial experiments the technique has been to hold the legs at roughly the 
. 

expected step angle, and try to start it rotating as a single unit, in the manner of a synthetic 

wheel. This is hardly a reliable technique, but it works often enough to be more attractive than 
t 

adding self-starting capability. 

4. Effect of Parameter Variations on the Walking Cycle 

Our walking analysis is now complete, and ready to use for study of parameter variations. I 

will offer a series of examples whose collective message is that walking is a robust natural mode 
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of the general biped configuration. Of course an exhaustive survey of the parameter space is 

impossible. Even for the "basic" biped this space is four dimensional ([R, c ,  rgyr], plus the 

slope y); with an1 additional variables it is much larger. Nevertheless, by interpreting a series of 

examples one can get a clear idea of each parameter's influence. I will discuss briefly the effect 

of each of the following: slope, foot radius, centre of mass height, radius of gyration, hip mass, 

c.m. offset from the leg axis, dampers at the stance foot and the hip, and mismatch between the 

legs. 

4.1. Scaling 

Before discussing these parameter variations I should make some explicit notes on scaling. 

Simple addition of mass has no effect on the gait. Increasing leg length reduces the step period 

in proportion to l l q ,  but increases the step length in proportion to 1. Overall, then, the speed 

increases like fl. Varying g also has a square-root effect; thus if astronauts on the moon tried to 

walk as on earth, they could only travel 40% as fast. Hence, as McMahon (1984) pointed out, 

they hop instead. 

4.2. SRope 

The odd man out on the parameter list is y, since it describes the environment rather than 

the machine. Figure 8 shows an example of its effect on hip half-angle CQ, dimensionless step 

period TO, and a stability index 1 z( .  This last parameter is the magnitude of the largest eigenvalue 

of the step-to-step transition equations (31). Since this set of equations has 3 eigenvalues, the 

largest is only a rough measure of relative stability; however, it is the most convenient summary . 
index. The design parameters in this example, as noted on the plot, are similar to those of our 

test machine. (Since the machine is the victim of constant tinkering, its parameters never remain 

constant for very long!) 

The plot should be compared with those for our illustrative models: q varies with y in the 

same way as for the rimless wheel (figure 5). Meanwhile 20 varies as for the synthetic wheel 

(figure 7), which is to say, not much at all. In fact 20 for this example is about 0.6 of the swing 
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more pronounced; 1 zl decreases monotonically all the way to R = 0.) A deeper well is not always 

broader, as you can judge from table 2. 

Table 2 
Calculated range of starting speeds 

from which a steady walk will be established 

R VARIABLE NOMINAL MINIMUM MAXIMlTM 

Note that these values apply with only one of the speeds 
perturbed from nominal at a time. 

Table 2 was calculated using the step-to-step equations (22,23). The calculations also indi- 

cate that convergence to the steady cycle is rapid from anywhere within the boundaries. As you 

can see, even with the larger feet the tolerances on initial @ are strict. This explains the hit- 

and-miss record of our experimental starting technique. However, we preferred to live with this 

problem rather than make the feet large, although in future we will make R somewhat larger 

than 1/3. The physical reason for the sensitivity to Qc is that the stance leg is an inverted pendu- 

lum: the smaller the foot radius, the stronger the tendency to diverge. The stronger the tendency 

to diverge, in turn, the more sensitive the swing period to initial speed. 

Foot radius is perhaps a peculiar measure of size; it can, however, be related to the length 

of a hi- foot. The relationship is determined by the movement of the support point between 

the start- and end-of-step: 

Ay = 2 q R  (36) 

A human foot is about 113 the leg length, so with a comfortable q of 0.3, the "equivalent radius" 

is about 0.5. Hence the test machine's feet are a bit small by human standards. Of course, human 
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feet are not cylindrical, but I suspect that this isn't a significant difference as far as dynamics are 

concerned. The important feature seems to be movement of the support point during the step, so 

a flatter curve or even a flat foot of equivalent length probably wouldn't change the walk very 

much. A still more intriguing possibility is leaf-spring feet, which would make support transfer 

elastic, and therefore more efficient. 

4.4. Centre of Mass 

Figure 10 shows an example of gait variation with centre of mass position. First consider 

the energetics with reference to the rimless wheel: Other things being equal, the energy lost on 

support transfer increases with the angle between the two support points and the mass centre. 

This accounts for the increase in specific resistance as the mass centre descends. At some point 

the lost energy can't be recovered simply by moving downhill, so the gait becomes unstable. 

Note, however, that this lower limit on the leg's mass centre can be extended all the way to the 

foot by adding sufficient hip mass, which raises the overall mass centre. Incidentally, the kinks 

in the plot of l z l  appear because I have plotted only the largest of the three step-to-step eigen- 

values, (31). A kink indicates a switch in their ordering. 

I've discussed the kink and instability at the low-c end; at the other extreme the problem is 

with the swing leg. If the inertia is held constant, then the natural period of the swing leg 

increases with ascending mass centre. The synthetic wheel model predicts that there should be a 

corresponding increase in the step period, and indeed that is indicated by the plot. But at some 

point the swing leg can't come forward fast enough to break the fall of the stance leg, so again 

the walk becomes unstable. 
. 

For the test machine c is about 0.63. We would have preferred higher for slower steps and 

lower resistance, but that would have required adding yet more lead ballast to the machine. 

4.5. Radius of Gyration 

Varying radius of gyration has effects comparable to those of moving the mass centre. 

These are plotted in figure 11. The variations in resistance and period are consistent with intui- 

tion; the stability presumably follows by the arguments given in the preceding section. The insta- 

Passive Dynamic Walking 



bility for large rHr was a constraint for us. With retraction mechanisms at one end, and a 

crossbar at the other, the "outer" leg pair (figure 2) without ballast has rgyr near the "dumbell" 

limit of 0.5. To reduce rgYr to an acceptable level, we had to concentrate lead at the legs' mass 

centre. Once the outer legs were adjusted, the centre leg was ballasted to match. The end result is 

that over 40% of the machine's mass is lead -- not an optimal design, but certainly a flexible 

one! 

4.6. Hip Mass 

As I mentioned in 54.4, machines with otherwise unacceptable values for c and rgyr could 

be made stable by adding sufficient hip mass. However, if one starts with acceptable parameters, 

then adding hip mass doesn't have much effect at all. Figure 12 shows moderate reductions in 

specific resistance and speed, as one would expect with elevation of the overall mass centre. 

Notice that in the limit m ~ ~ p + l ,  the "synthetic wheel approximation" holds, that is, the swing 

motion doesn't affect the stance motion. In this case the "synthetic wheel" has R <I, which 

makes the walk convergent rather than neutrally stable. 

The important message of figure 12 is that a passive walker has a large payload capability. 

We haven't explored this feature, since, as I mentioned earlier, it would have required design of 

some mechanism for keeping the payload upright. 

4.7. Offset of the Mass Centre from the Leg Axis 

In the "basic" biped, the mass centre of each leg is on the axis between the hip and the 

foot's centre of curvature. However, the equations of motion allow for a lateral offset, and some 
* 

sample calculations suggest that the dynamics are quite unforgiving of variations. With the 

* parameters of the test machine, a stable walk is possible only for -0.009<w <+0.002. Actually 

we didn't consider lateral offset at all in assembling the test machine, and in fact the two legs 

came out with different values. For the outer legs w is +0.008; for the centre, -0.01. While nei- 

ther value is within the stable region, it turns out to be helpful that they have opposite sign 

(which is the more symmetric arrangement when viewed from the side). Calculations with the 

step-to-step equations (22,23) indicate that, with our example parameters, offsets of up to about 
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0.03 are tolerable provided they are opposite and nearly equal for the two legs. The gait varies 

from step to step as support alternates between the legs, but there is a steady cycle repeating over 

two steps. Table 3 lists some calculated results for the experimental machine. 

Table 3 
Steady walk calculated for the test machine 

STANCE STANCELEG INITIAL STEP AVERAGE 
LEG w a PERIOD SPEED 

zo [dsl 

outer +0.008 0.244 2.35 0.5 1 
centre -0.01 0.28 1 2.51 0.48 

4.8. Damping 

Damping of the moving parts is undesirable. However, it is also unavoidable, so its effect 

warrants some study. The main sources of damping are friction on the stance foot and in the hip 

bearings. According to common friction models, the damping might be coulombic (i.e. a con- 

stant torque opposing the motion) or linear (i.e. an opposing torque proportional to speed). Our 

interest is in getting a rough idea of the effect of dissipation, rather than worrying about the 

details of how it arises; hence I will use the model which is more simply accommodated within 

the equations of motion. 

Coulomb friction cah be represented by adding a constant vector to the RMS of (14). In the 

case of friction on the stance foot, the effect is similar to offsetting the stance leg's c.m. back- 

ward (w c 0). Coulomb fiction on the hip is harder to handle, because the angular speed at the 

joint reverses during the step; hence (14) would have to be solved piecewise. 

Viscous friction, on the other hand, is easy to treat; one need only introduce a damping 

matrix F into (14): 
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For a damper at the hip, F is 

For a damper at the stance foot, all elements are zero except F11. Note that f is non- 

dimensionalised by rn @. 

Table 4 lists some sample results. They indicate that quite strong damping on the stance 

foot can be balanced by increasing the slope. On the other hand, only a little damping at the hip 

joint sabotages the steady walk. Thus if a hip damper is suddenly turned on the walk will decay, 

although the decay can extend over many steps iff is close to the limit for a steady solution. 

Table 4 
Maximum damping coefficients 

with which passive walking will remain stable 

DAMPED FOOT VISCOUS SLOPE EIGENVALUES 
JOINT RADIUS DAMPING SWING TOPPLING 

COEFFICIENT MODE MODE 

stance 0.33 0.18 0.078 -0.042 f 1.47i +0.72 
foot - 1.03 

stance 0.5 1.05 0.255 -0.138 f 1.35 +0.25 
foot -2.24 

Our machine has 114 inch ball bearings, whose friction we've observed during the course of 

adjusting leg parameters. That is, to determine each leg's radius of gyration, we time pendulum 

swings over several tens of cycles, while keeping the other leg clamped. f of 0.0017 would 

cause a 3% reduction in amplitude per cycle. The observed decay is comparable but probably 

smaller. (We haven't checked carefully.) Thus the bearing fiiction is marginally acceptable with 

R of 113, and would certainly be adequate with a larger R . (On this point it is worth noting that 

the amplitude of these test swings is about half that experienced in a comfortable walk. 
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Therefore if the damping is coulombic rather than linear, the "effective" f during walking is less 

than the pendulum test suggests.) 

4.9. Leg Mismatch 

The centre leg and outer pair of the test machine have been ballasted to match within the 

following limits: 

Ihl < 10-2 

I A C I  < 2x10-3 

1bgY, I < 4 x 10-3 

IAZI < 5 x 1 W 3  

One would certainly hope that this level of mismatch is not a problem, but since a calcula- 

tion is straightforward we have checked by solving the equations of motion (22,23) over several 

steps. Figure 13 shows the leg trajectories for an example with legs matched except for a 10% 

difference in mass. You can see the similarity between the motion of this machine and that of the 

ideal synthetic wheel (figure 7). However, here the cycle repeats over not one, nor two, but 

rather four steps. Of course there would be a one-step cycle with no mismatch, and a two-step 

cycle with only a small mismatch. Here, then, is an example of frequency jumping, which is not 

uncommon among nonlinear systems. But aside from this curiousity, the main point is that the 

dynamics are tolerant of mismatch between the legs. 

5. Experiments 

6. The Test Machine - 
Having run through the general effects of each design variable, we now turn to the specific 

example of our test machine. To expand on the description already given, its mass is primarily - 
aluminum structure and lead ballast. The feet are 1/16 aluminum strips, 1 inch wide, and sub- 

tending an arc of 0.75rad. These are soled with rubber matting. Membrane switches are glued 

inside the sole on the rear part of each foot. Closing of any of these switches triggers lifting of 

the feet on the opposite leg, followed by re-extention in time for support transfer. The throw is 

16mm, and the sequence takes O.5sec. The feet are lifted by DC motors driving jackscrews. 
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Power for the motors is supplied by 6 Ni-Cad "AA" cells, and for the sequencing electronics by 

an independent set of 4 "AA" cells. Each motor weighs only about 50gm and is far too weak to 

move the whole machine. It would be particularly appropriate to describe the jackscrew 

mechanism as an Achilles9 heel. Our best test to date has produced only 4 support transfers in 

series before one of these failed. So we are anxiously redesigning the mechanism, but in the 

meanwhile we can make some comments on results thus far. 

6.1. Experimental Results 

Figure 14 shows a series of steps, in the form of hip angle vs time. Hip angle is defined as 

positive if the centre leg is ahead of the outer leg, so in steady walking it would be cyclic over 

two steps. The method for making the measurement warrants a brief comment. The machine 

itself does not have angle sensors. Instead, we used frame-by-frame photogrammetry of VHS 

tape. Each fi-me shows a perspective projection of the machine. We inverted the projection by 

a least-squares estimation technique similar to one described by Tsai (1987). There is a gap near 

the beginning of the record; in this interval a poor viewing angle, combined with rather blurry 

video, prevented accurate measurement. Otherwise checks of the photogrammetry technique 

against test cases gives us high confidence in the hip angle estimates. (Of course we would have 

preferred to measure the individual leg angles rather than their difference, but when the tape was 

made we hadn't thought to include the necessary vertical reference in the image.) 

This trial was done on a tabletop inclined at 0.019rad, and the expected gait on this slope 

was given in table 3. Our manual starting technique left the machine with a initial hip angle 

rather larger than the steady-cycle amplitude. Consequently the motion of the swing leg was 

slightly exaggerated during the first step, and the period relatively long. The next two steps indi- 

cate a relatively steady motion, which continued into the fourth step. The centre foot then - 
retracted on cue, but didn't re-extend, so the machine had an experience similar to a human 

encountering am unexpected step down. 

Table 5 lists the periods and lengths of the steps. One would not expect these to agree pre- 

cisely with the calculated steady cycle, as given in table 3, since these initial steps must include 

some perturbations due to the starting transient. However, that turns out to be insufficient to 
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explain the discrepancies. The measured amplitude is roughly 10% larger, and the period 

roughly 10% longer, than the model predicts. 

Table 5 
Parameters of the steps plotted in figure 14 

STEP SUPPORT INITIAL PERIOD Z 
LEG a [secl 

1 centre 0.34 0.68 2.9 
2 outer 0.28 0.62 2.65 
3 centre 0.3 1 0.63 2.7 
4 outer 0.28 

The discrepancy may arise in the equations for motion during the step (14) or for support 

transfer (19). The equations of motion are more easily checked. We measure parameters of each 

leg as follows: mass with an ordinary balance; c with a knife edge; rgyr by pendulum oscillation 

with the opposite leg clamped; and R and w most reliably by finding equilibrium angles (AS% 
in (1 7)) vs y. These parameters are inserted into the equations of motion (14), and 4 eigenvalues 

and eigenvectors emerge. Two are real, corresponding to the toppling mode, and two are imaq 

ginary, corresponding to the swing leg's pendulum motion. 

I According to the synthetic wheel model, the swing mode is the most important factor in 

determining the step period (1 1). The question is whether this mode is correctly predicted by the 

equations of motion, given the parameters measured as described above. One can check as fol- 

lows: Stand the machine on a flat surface, set the leg angles in the ratio specified by the swing- 

mode eigenvector, and release. Ideally a persistent oscillation in the swing mode should ensue. 

Of course, since the machine also has an unstable mode, this experiment is in practice very brief. 

However, we've found it fairly easy to get at least two clear swing-mode oscillations before top- 

pling develops; these provide sufficient data for our purposes. Again using a video camera as the 

measuring device, we have found a swing-made period of 0.98 + 0.Olsec with the stance leg rol- 

ling, as opposed to l. 17sec with the stance leg clamped. This result agrees with the prediction. 

Despite agreement on this most important point, there may be some smaller discrepancies 

in the equations of motion due to non-ideal behaviour of the feet. While measuring static 
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equilibria vs slope, we were surprised to find that on some slopes the equilibrium was stable, 

albeit for quite small perturbations. Evidently the feet flatten locally, despite behaving over 

larger displacements as cylinders with R =1/3. 

In view of the agreement between measured and calculated swing periods, however, we are 

most inclined to suspect support transfer as the primary agent of discrepancy. On this point it is 

worth reviewing (1 I), according to which one step of the synthetic wheel requires about 213 of 

the swing period (i.e. wF20 = 4.06). For the test machine, the prediction is w ~ 2 0  = 3.6; the meas- 

urement is UFZO = 4.0. So we are seeing behaviour which is closer than expected to that of the 

synthetic wheel, and this may be due to higher-than-expected efficiency in support transfer. 

That, in turn, would arise if the feet had some spring action. Of course 1/16 inch aluminum strip 

is in this context rather flexible, so elastic effects are certainly conceivable. 

From a modeller's point of view elasticity is a complication, but as far as efficiency is con- 

cerned, it is all to the good. In any event, we will make improvements in the feet before studying 

support transfer in detail. For now the experimental results indicate that the machine behaves 

approximately as the model predicts. Thus one can have some confidence that the conditions 

specified by the model can be realised in practice. --. 

7. ImprovemenUs to Passive Walking 

We have now discussed the physics, mathematics, and experimental demonstration of pas- 

sive walking. The balance of the paper is devoted to some comments on exploiting the dynam- 

ics in a useful walking machine. Required abilities include steering, climbing shallow and steep 

slopes, and varying the stride from step to step to hit irregular footholds. But before taking up 
L, 

these issues, consider first the problem of passive foot clearance. 

- 
7.1. Fully Passive Walking 

Since om test machine is for model verification rather than practical use, active foot clear- 

ance is actually desirable: It allows us to keep the dynamics as simple as possible. However, the 

toy of figure 1 is fully passive, and it would be nice to do the same in a practical machine. 
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One could argue that this is just an aesthetic concern, since both the control and energy 

required for foot clearance should be incidental. In practice, though, foot clearance can be 

expensive. Our machine, weighing 4kg and having a typical specific resistance of about 0.02, 

has a "fundamental" energy dissipation of about 0.29 per step. On the other hand, each foot 

actuator, moving only about 80gm, consumes about 3J per step! The energy is more or less 

equally divided between heating the electronics, the motor, and the jackscrew mechanism; an 

entirely negligble fraction actually goes into motion of the foot. Presumably the drives could be 

improved; however, since it apparently isn't completely trivial to reach fundamental limits with 

an active mechanism, perhaps a passive solution would be more attractive. 

7.1.1. Lateral Rocking 

The toy sf figure B clears its feet by lateral rocking. Again the dynamics we most easily 

illustrated by considering the synthetic wheel. The toy's feet are circular in forelaft section, as 

are those of the synthetic wheel of figure 6. But a close look at figure 1 will reveal that together 

the feet also form a circular arc in lateral section. The centre of lateral curvature is above the 

overall mass centre, which makes side-to-side rocking a pendulum-like oscillation. In walking 

this oscillation should proceed in phase with each step, and with the frequency tuned so that one 

step takes one-half the rocking period. Thus from (1 I), the swing and lateral rocking frequencies 

should be in the ratio 

If this condition is satisfied, then walking is lossless, as for the 2D wheel. (There is an addi- 

. tional requirement that the oscillations be phase-locked. As it turns out, support transfer 

"automatically" eliminates an initial phase error over several steps.) If the tuning condition is not 

satisfied, then there is an energy loss on each step; if the mistuning is too large, then there is no 

walk at all. 

Regardless of the frequency ratio, however, this "3D" synthetic wheel model requires that 

the feet have zero lateral separation. In practice one might prefer wider separation for better 

lateral stiffness. This becomes problematic, as one can appreciate by rocking a VHS cassette, for 
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example: The motion is more long-lived with support on the short rather than the long side. 

Incidentally, an analysis of this motion is presented by McGeer (1988); it is an example for 

which the impulsive treatment of support transfer is very accurate. For our purposes, though, the 

point is that the wider the foot spacing, the greater the energy lost on each rock. This must be 

recovered from the forward motion, but it turns out that only a small amount of energy can be 

transferred on each step. Hence a walk can be sustained only with narrow foot spacing. 

Actually in our analysis of this sort of 3D walking (which is analogous to that presented in 

this paper) we have neglected yaw, that is, rotation about the vertical axis. Yaw does improve 

transfer of energy from forward motion to rocking. However, the fact remains that the toy of 

figure 1, and its quadruped counterpart, have quite narrow foot spacing. Moreover, their pure- 

rocking motion is relatively persistent, so they are certainly designed to minimise energy loss. 

7.1.2. Passive Foot Clearance without Rocking 

The problems of tuning (39) and lateral stiffness make rocking unattractive, but presumably 

there are other schemes for fully passive walking. Thoughts on how to do it without using the 

third dimension have led me to consider a modification of the stiff-legged walker which is 

remarkably anthropomorphic (figure 15). Clearance during the swing phase is arranged by 

flexing the leg at the knee. During the stance phase, the knee is prevented from rotating by a 

mechanical stop. The arc of the foot must be abbreviated on the "heel" side to ensure that the 

support force holds the knee to the stop during the initial part of stance. 

When the support force is removed at the start of the swing phase, a spring launches the 

lower leg on a ballistic trajectory. It seems preferable to use the spring only to provide a starting 

I impulse, rather than to drive the whole trajectory, since the swing period will then be relatively 

insensitive to variations in spring stiffness. In any case, the period must be tuned so that the - 
lower leg is repositioned in time to catch the next support transfer. Again positioning is not abso- 

lutely critical; the knee only need be within a range such that the impact locks it. 

Incidentally, by the same qualitative discussion one could argue that such a design could 

walk in either direction, just as a human can walk forwards and backwards. At present, however, 

the argument is purely qualitative, and some analysis is required to establish whether these legs 
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really could walk passively. 

7.2. Steering 

Steering is related to the foot clearance problem. Our test machine doesn't even have a 

dimension for steering, let alone a mechanism. A steerable version is possible, just as it is possi- 

ble for one to steer when walking on crutches. Steering would be easier, however, with a true 

biped. That would make support point-like and so offer little resistance to rotation about the 

vertical axis. One could steer by applying a torque at the hip, or, perhaps, by biasing the walking 

cycle with small adjustments in leg length. 

Of course the key problem with a true biped is sideways toppling. A machine whose left 

and right legs were confined to parallel forelaft planes obviously wouldn't work; it would fall 

sideways as soon as one leg left the ground. Instead each leg during its support phase must rotate 

inward under the overall mass centre. A line of human footprints provides a simple demonstra- 

tion: footfalls have much smaller lateral spacing than the width of the hip would suggest. It 

remains to be seen whether such a lateral cycling of the legs could be combined with 2D passive 

walking. If there could be a passive cycle, it seems that it would have to be actively stabilised to 

prevent sideways toppling. Since this active input would only counter disturbances, however, it 

would not necessarily be a large burden on the controller or the power supply. (Although the les- 

son of our foot retraction scheme indicates that efficient implementaion might not be trivial!) 

7.3. Powered Walking 

As we suggested in the introduction, hill climbing and step-to-step stride variation can be 

achieved by a fairly simple extention of the passive walking model. Options for energy input are 

torquing at the hip and impulsively pushing-off at the end of stance. The latter is analogous to 

flexing of the ankle in a human walk, and is tidier analytically. It would enter the walking equa- 

tions at the same point as the support transfer condition (19), and so modify the step-to-step 

equations (22, 23). Solutions for the steady cycle and step-to-step stability woulld follow as 

before, with the magnitude and direction of the impulse as additional design parameters. Options 

for physical implementation include stronger versions of our current jackscrew drives, or 
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spring-loaded pistons which would be cocked during swing phase. 

7.4. Gait Variation 

Once one has such a physical capacity for energy input, one dso has an effective means for 

control of the stride. Our fundamental concept is that control should involve only a small pertur- 

bation on the passively generated cycle, and this concept has a precise analytical expression. 

One can formulate the llinearised step-to-step equations (31) with the push-off impulse as the 

control variable. One can then choose control laws using standard methods for discrete-time 

linear systems. 

The control law would q u i r e  both feedback and feedforward components. The feedback 

component would maintain a specified stride (i.e. Q) despite, for example, variations in slope 

while traversing rolling terrain. It would require several strides to recover from a change in slope 

or other disturbance. Feedforward would handle situations requiring faster response, such as hit- 

ting a foothold selected only one step in advance. (Feedforward implies using the step-to-step 

equations of motion to calculate the required gush-off impulse. Consequently the technique is 

sensitive to parameter errors, but there is no alternative if one needs such fast action. Feedback 

control is more robust, but slower.) 

In some situations foothold specification one step in advance may be too much to ask; an 

adjustment may be necessary during the find step itself. Such an adjustment would require a 

new actuator as well as additions to the control law. Applying torque at the hip is one option. 

Alternatively, following the human example, one could use ankle motion to move the support 

point longitudinally along the foot, which varies the torque on the machine. 

7.5. Steep Slopes 

Passive walking with fixed leg lengths cannot be sustained on slopes exceeding a few 

degrees; the csllision at support transfer isn't sufficient to dissipate the kinetic energy accumu- 

lated during the step, Descending a steep slope such as a staircase would require some compres- 

sion of the leg, both for energy dissipation and simply to hit the footholds with reasonable leg 

angles. Analogous requirements apply for climbing. We hope to find that the changes in leg 
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lengths can be sufficiently "decsupled" from the pendulum motion hat longitudlirnal positioning 

can still proceed passively. 

$. Summary 

The analytical model for the biped of figure 3 indicates the simplicity and efficiency of pas- 

sive walking, and its robustness with respect to most design variables. Preliminary results with 

the experimental machine, figures 2 and 14, demonstrate that the &el can be implemented in 

practice. Our comments in these last few pages describe how the dynamics of passive walking 

may be expected to genedise beyond our two-dimensional, unpowered, stiff-legged, and 

circular-footed demonstrator, md so be applied to practically useful machines. Efficiency and 

ease of control are the attractions relative to systems requiring active gait generation. Some care 

is required to redise these advantages, particularly to ensure b w  hip damping, and more experi- 

mental and analytical work is required to see how far the passive walking principle can be 

extended. However, the promise of getting something for nothing is well worth pursuing. 

9. Appendix 

9.1. Dynamics of an N-link Chain with Rolling Support 

We will now derive the linearised equations of motion (14). Although we are interested in a 

machine with only 2 links, there is little extra effort in deriving general equations for an N-link, 

two-dimensional, open chain. Figures 16 and 17 illustrate the necessary notation. 

The dynamics can be expressed in N second-order equations, each of which has the form 

where Tn is the torque applied to the nth joint, and H i  is the angular momentum sf links n 

through WI about the instantaneous position of the nth  joint. In the case of n =1, his  position is 

the point sf  contact between the foot and the ground. 

(A%) is the most obvious basis for deriving the dynamics, but formulation is actually easier 

if one uses the form 
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The objective is to express these equations in terms of the angular rates Ql through QN. Hn is 

Therefore 

Some care must be exercised in calculating the derivative of this expression, as required by (A2). 

Bear in mind that Hn is taken with respect to a fixed point in space, which is occupied by joint n 

only instantaneously. Thus the position vectors are treated as constants in the differentiation, 

which is therefore simply 

From figure 16 md 17, the position vectors are as follows: 

Pw - < + l , p  = In f n  n = 2,3,  . . . ,  N 
-3 
1 - P = I 1 f l  + R (2 -21) 

Meanwhile, the kinematics of the chain require that the velocities satisfy 

vl = ( c l f l  - w l f l  + R @ ' - f l ) ) Q l  

Solving these for < in terms of the angular rates leaves 

The acceleration is therefore 
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(c,& + w,j,)Q; - lpIZp% 9 R i l Q f  

More simply, this expression has the form 

Substituting these formulas and the position vectors (A6,7) into (A5) produces an expression of 

the form 

Each coefficient My and CV varies with the joint angles, through the various cross products in 

(A5). In fact for stance dynamics linearised with respect to zero angular speed, the coefficients 

Cv , and hence Aw , By in (A1 1), are not used and need not be calculated. We do the remain- 

ing calculations in APL, as follows: 

1. One routine calculates (sine,, cose, ), n = 1, N . 
2. Using these results and the dimensions of the links, the next routine calculates the 

2N coefficients X ,Y in (A1 1). 
3. Using these results and the link masses and inertias, the next routine calculates the 

N2 coefficients M in (A12) using (A5,6,7). 

Now according to (A2) and (A12), the n th equation of motion is 

For the RHS we rieed the torque. The principle torque is due to gravity, and can be 
* 

expressed as follows: 

Taking the difference required by (A2), then, produces 
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In scalar terms, the expression is 

This is linearisd about the vertical, i.e. y = 0 and 8, = 0 or n. (For the biped (14) in particular, 

€I1 = 0, e2 = n.) Thus 

The "+" applies for en, = 0; "-" for en, = n. Additional torque terms can also be added to this 

expression, such as we have done to calculate the effect of damping in $4.8. 

Including only the gravitational torque, however, the linearised equation of motion for link 

n , from (A 1 3 ,  is 

. 

.. 
Thus the coefficients in (A12) are all one needs to formulate the LHS. Combining all N equa- 

tions in a matrix form produces (14). 
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9.2. Support transfer 

Bookeeping for support transfer requires 

1. rotating each link's unit vectors by K 

2. changing the sign of w, 
3. exchanging c, and d, 
4. reversing the order of link indices, since link 1 is always the contact link. 

d It also entails a change in each link's angular velocities. We approximate support transfer 

as an instantaneous event. This implies that contact produces impulsive forces at each joint. 

However, there are no impulsive torques. Consequently, H, (as defined with the post-transfer , 

link indexing) is conserved in support transfer. That is 

(1 8) combines N of these equations in matrix form. 

M,$ is evaluated, as in (A12), using the post-transfer link parameters and velocities. Thus it 

can be calculated using the procedure outlined in 59.1. MG, on the other hand, must be 

evaluated with the post-transfer link parameters, but the pre-transfer velocities. Thus a slightly 

different procedure applies: 

1. Calculate the 2N coefficients Xv , Y, using pre-transfer link parameters. 

2. Renumber both sets of indices, i.e. X, -+XN-,, N - ~  , etc. 

3. With these coefficients and the post-transfer link parameters, find the N2  
coefficients MG according to (A4). 

. 
Thus we use the same set of routines as for evaluating (A12) in the dynamics analysis, and sim- 

ply modify the input data. - 
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Figure 1 A bipedal toy  which walks passively down shallow inclines. The dynamics of 
wobbling are similar. 
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Figure 2. The experimental machine, a "two-dimensional" version of the walking toy. 

The legs are about one-half human scale. 
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Figure 13. A series of steps calculated for e mechine with u m t c k d  leg masses. The 

lighter leg takes the first step. The walk remains stable despite the mismatch, but 

the steady cycle is 4 steps long. With smaller mismatch the cycle repeats in only 

two steps. 





L. Figure 15. A concept for fully passive walking in two dimensions. A knee joint is added 

to the original machine; it must be ar or above the foot's centre of curvature so that 

$mure will clear the foot. The swing motion is ballistic after the spring provides a 

starting impulse. The foot is shortened on the heel side so thut the support force 

will hold the stance knee against the stop. 

Contact $rces the stance The stance leg is Thus the s w i n g  Rot  
knee agains t  the stop pushed into  fexure  clears the ground 

The support f i n e  keeps While the s w i n g  Leg I n  t i m e  to  be locked 
the stance leg extended straightens a g a i n  b y  the impac t  load 






