Vise Stop

Geometric Dimensioning and Tolerancing

Life Without GD&T

Univ. of Arizona. "What is Geometric Dimensioning & Tolerancing?"

Life Without GD&T

Feature Control Frame

Geometric characteristic

5

Wabiszewski, Graham. "Engineering Drawings and GD&T." MEAM201: Machine Design and Manufacturing

Geometric control symbols

Туре	Geometric Characteristics		Pertains To	Basic Dimensions	Feature Modifier	Datum Modifier
Form	o à	Straightness Circularity Flatness Cylindricity	ONLY individual feature		Modifier not applicable	NO datum
Profile	((Profile (Line) Profile (Surface)	Individual or related	Yes if related		RFS implied unless MMC or LMC is stated
ntation	4	Angularity	ALWAYS related fea- ture(s)	Yes	RFS implied unless MMC or LMC is stated	
	L	Perpendicularity		0		
Orie	11	Parallelism				
Location	\$	Position		Yes		
	©∥	Concentricity Symmetry				
Runout	\$ \$\$	Circular Runout Total Runout			Only RFS	Only RFS

Adapted from Oberg's Machinery Handbook 19

Form (flatness, \Box)

The distance (zone) between two parallel planes that just encompass all points on a surface

7

Orientation (perpendicularity, \perp)

8

The distance (zone) between two lines parallel to each other and perpendicular to a datum placed such that all points on the evaluated surface just fall between the lines

Orientation (parallelism, //)

The distance (zone) between two lines parallel to each other and parallel to a datum placed such that all points on the evaluated surface just fall between the lines

9

Hole/pin tolerances

Locational tolerances based on coordinate dimensions infer a rectangular tolerance zone - care should be taken to ensure features do not overlap at their maximum extents (the corner of the tolerance zone)

Instead, basic dimensions and a diametrical tolerance zone can be identified using a GD&T control reference frame

Hole/pin tolerances

If locational tolerances based on coordinate dimensions are still preferred, a conservative figure of merit may be specified by the extents of a square inscribed in the circular tolerance zone

Location (position, \oplus)

All center points of a cylindrical feature (hole or post) that fall within a cylinder of a prescribed diameter (tolerance) and centered at the true position of the cylindrical feature

1

3

MMC and LMC

1.50 ± .07

The maximum material condition (MMC, M) describes a feature produced with the maximum amount of material – smallest hole size or largest shaft size

The least material condition (LMC, (L)) describes a feature produced with the minimum amount of material – largest hole size or smallest shaft size

Bonus tolerance

1

5

When positional tolerance is based on MMC, diametrical deviations from MMC yield corresponding increases in the diametrical tolerance zone

Tolerance Stack-up (cont'd)

Name	me Dimension Tolerance		Tolerance(-)	Direction	
Α	0.375in	+.005in	005in	Negative	
В	0.375in	+.005in	005in	Negative	
С	0.750in	+.010in	000in	Negative	
D	1.80in	+.01in	01in	Positive	
E	0.281in	+.000in	005in	Negative	
Morst	0.019in	+.030in	025in		
Case	Worst Case (I	Max) = +0.049in	Worst Case (Min) = -0.006in		

- We calculate that there is a 0.019" nominal gap.
- Worst case largest gap of 0.049".
- Worst case smallest gap of -0.006".
- This worst case scenario results in an interference fit. The parts will not fit and the dimensions/tolerances will need to be changed.

Another Worst Case Example

Part A: Pin base

This diagram shows to two worst case scenarios.

This may be useful for a certain project...

Source: Tolerance Design, pp 109-111

