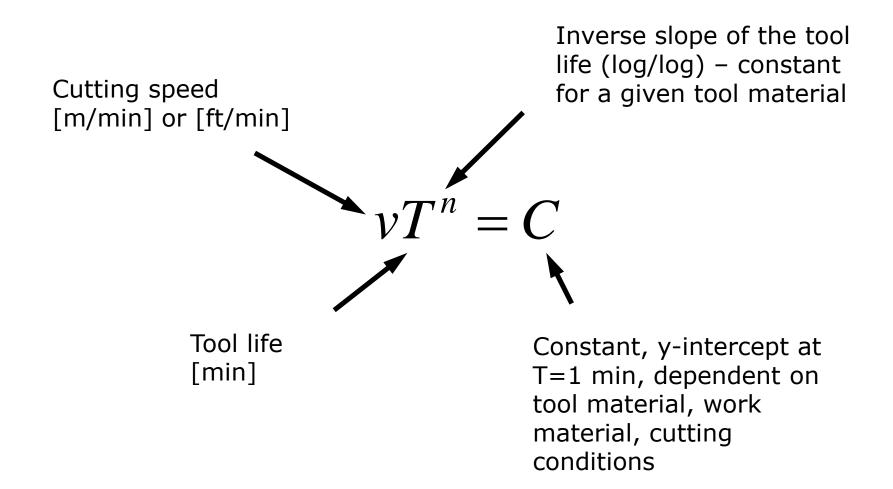
Machinability

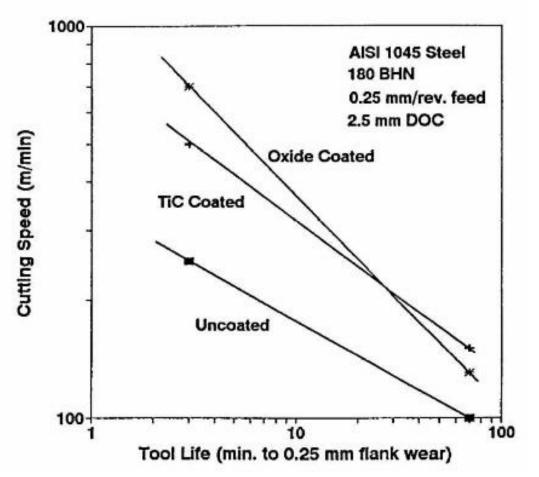
14

Machinability

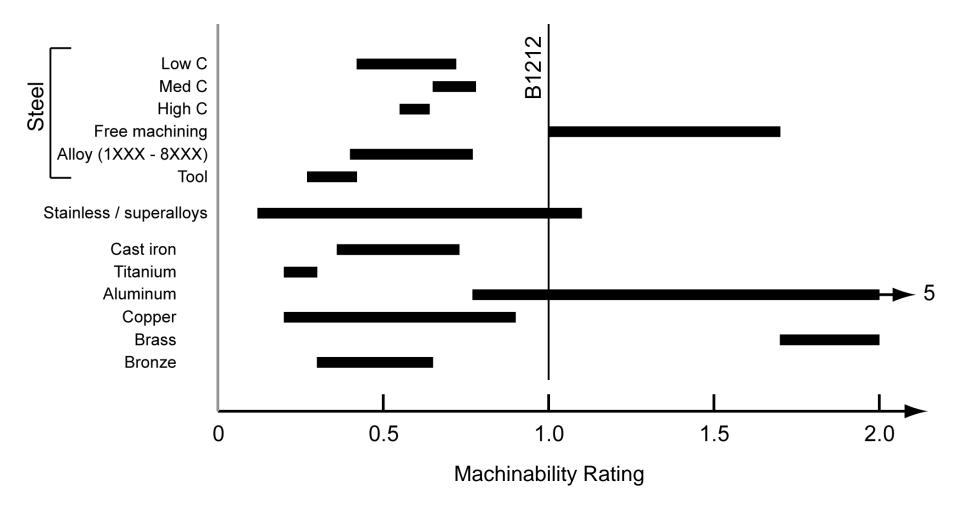

Machinability is the ease with which a given material may be worked with a cutting tool

Machinability ratings (MR) provide and understanding of the severity of a metalworking operation in comparison to B1112 steel

Factors affecting machinability include <u>tool material</u>, <u>feeds</u>, <u>speeds</u>, <u>cutting fluids</u>, and the <u>microstructure</u>, <u>grain size</u>, <u>heat treatment</u>, <u>chemical composition</u>, <u>fabrication methods</u>, <u>hardness</u>, <u>yield strength</u>, and <u>tensile strength</u> of the work piece

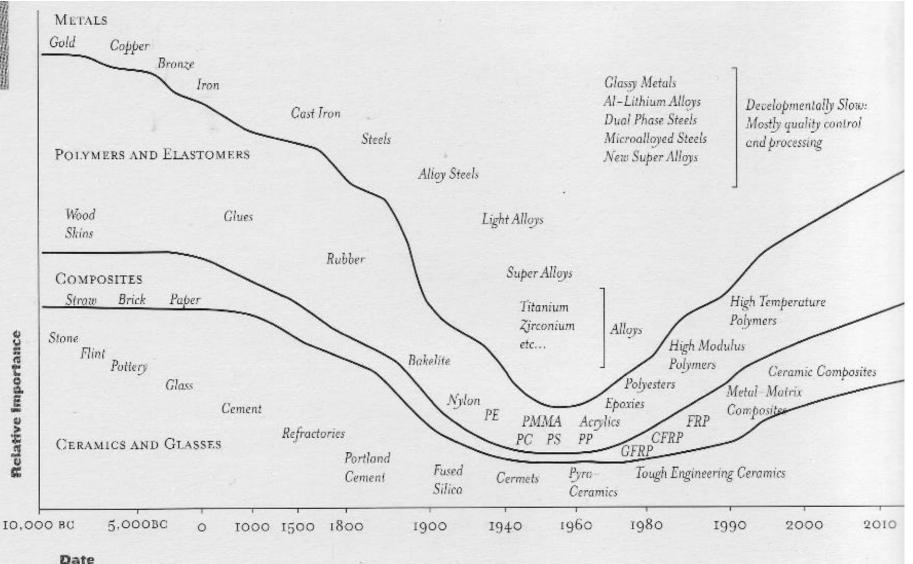

Machinability (Tool Life)

The Taylor tool life equation describes the expected tool life of a cutting tool as a function of cutting speed



Machinability (Tool Life)

Tool life for coated and uncoated WC cermet cutting bits against 1045 steel



Machinability of Various Metals

Metals

Materials Importance Over Time

Physical Properties of Metals

Strength

Elasticity / stiffness

Brittleness / ductility

Density

Conductivity (electrical and thermal)

Stability (chemical, corrosion, food safety)

Machinability / weldability

Cost

Combustibility

Melting point

Thermal expansion

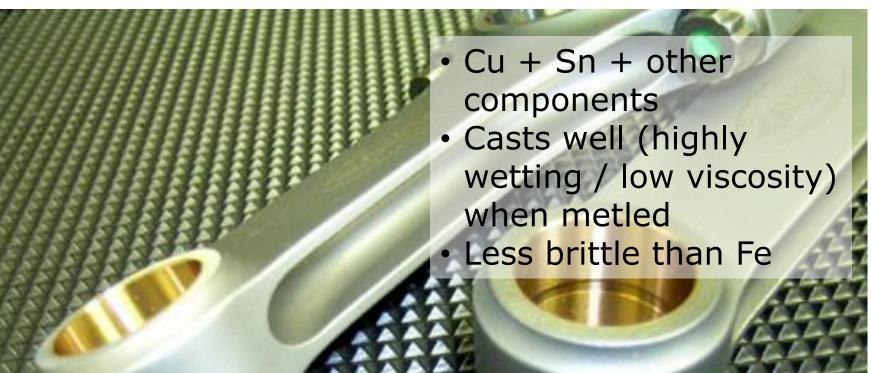
Copper

Y = 45 ksi UTS = 50 ksi H = B40 E = 17,000 ksi

Types of Copper

Identification	Properties
C10100 (oxygen free copper, OFE)	99.99% pure with less than 0.0005% O, expensive, used in high vacuum components as it does not outgas
C11000 (electrolytic tough pitch, ETP, ultraconductive copper)	Unalloyed, 99.9% pure, high ductility, corrosion resistance, poor machinability, excellent forming characteristics
C14500 (tellurium copper, TelCu)	Corrosion resistant, 0.5% tellurium, 1.0 MR

Brass


Alloy of Cu and Zn (Zn ~5 - 50% by wt)
Can be highly polished and easily plated (Au or Ag)
Easily machined

Y = 45 - 57 ksiUTS = 50 - 70 ksi H = B60 - B100 E = 14,500 - 18,500 ksi

Types of Brass

Identification	Properties
230 (red brass)	Reddish in color, Cu (84- 86%) / Zn (15%) / Fe (0.05% min) / Pb (0.06% min), high strength brass
260 (yellow / cartridge brass)	Used in shell casings, low MR, good formability and workability, Cu / Zn (28- 32%) / Fe / Pb
353, 385, 360 (free machining, ultra-machinable brass)	Cu / Zn (35%) / Fe / Pb (2- 4%), easily machinable, poor performance for forming operations
Alloy 485 (high-leaded naval)	Corrosion resistance via Sn, Cu (60%) / Zn (~40%) / Sn(0.7%)

Bronze

Y = 21 - 55 ksiUTS = 35 - 120 ksi H = B65 - B170 E = 96,000 - 120,000 ksi

Types of Bronze

Identification	Properties
C863 (Manganese bronze)	High strength variant, Cu (60-80%) / Al (3-8%) / Fe (2-4%) / Mn (2-5%) / Zn (~25%)
C932 (Bearing bronze)	Used in bushings and bearings, highly machinable, Cu (81-85%), Sn (6-8%), Pb (6-8%), Zn (2-4%)
C954 (Aluminum bronze)	High strength and corrosion resistance, tarnish resistant, used in marine applications, Cu (83%), Fe (3-5%), Al (10- 11.5%)

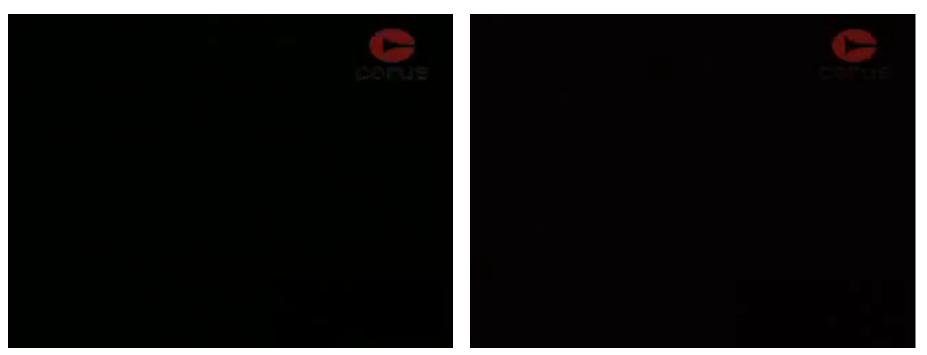
Cast Iron

- Fe + C + Si
- Brittle
- Low melting point
- Highly machinable
- Often cast

Y = 33 - 108 ksi UTS = 25 - 135 ksi H = B130 - B450 E = ~130,000 ksi

Types of Cast Iron

Identification	Properties
A48, Grey cast iron	Moderate hardness (B260), machine tool bases, cylinder blocks, Fe / C (3.4%) / Si (1.8%) / Mn (0.5%)
A47, Malleable iron	Low hardness, gears, crankshafts, Fe / C (2.5%) / Si (1%) / Mn (0.55%)
Ni-hard type 2	High strength applications, Fe / C (3%) / Si (2%) / Mn (1%) / Ni (20%) / Cr (2.5%)


Steel

Low / medium / high carbon steel - general formula is Fe + C + other trace components Steel alloys Malleability and ductility largely determined by carbon content

Steel Production

Continuous casting

Hot rolling

Cold rolling = room temperature, work hardening, high quality surface finish

Hot rolling = high temperature, no work hardening, scaly finish

Low Carbon / Mild Steel

0.05 – 0.30% C
Poor corrosion resistance

- Common structural material, car body panels, cans
- Low cost

Y = 50 - 80 ksi UTS = 60 - 80 ksi H = B120 E = 30,000 ksi

Medium Carbon Steel

- 0.30 0.59% C
- Balance of ductility, strength, and wear resistance
 Railroads, crankshafts

Y = ~100 ksi UTS = 115 ksi H = B170 - B210 E = 30,000 ksi

High Carbon Steel

- 0.60 0.99% C
- Strong and hard
- Springs, knives, blades, piano wire

Y = ~150 ksi UTS = 100 - 140 ksi H = >B200 E = 30,000 ksi

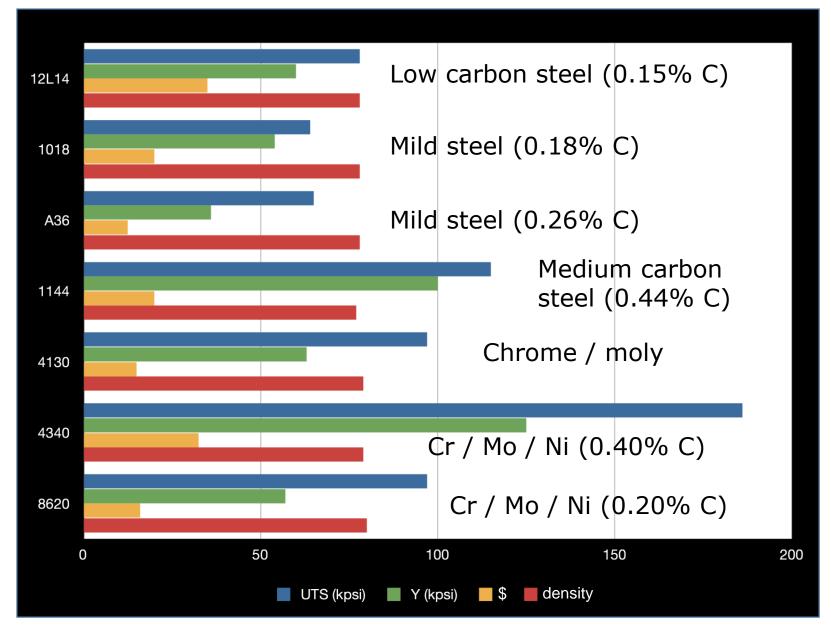
Steel and Alloy Steel Designations

SERIES	STEEL TYPE
1XXX, 11XX	Plain carbon (non alloy) steel
13XX	Manganese steel
2XXX	Nickel alloy steels
23XX	3.5% Nickel
25XX	5.0% Nickel
3XXX	Nickel/Chrome steels
4XXX	Molybdenum steels
40XX	Carbon/Moly
41XX	Chrome/Moly
43XX	Chrome/Moly/Nickel
46XX or 48XX	Moly/Nickel
5XXX	Chromium alloy steels
51XX	Low Chromium content
52XX	Medium Chromium content
53XX	High Chromium content
6XXX	Chromium/Vanadium alloy steels
86XX or 87XX	Nickel/Chromium/Moly alloy steels
92XX	Manganese/Silicon alloy steels

Tool Steels

Μ

D


S

W

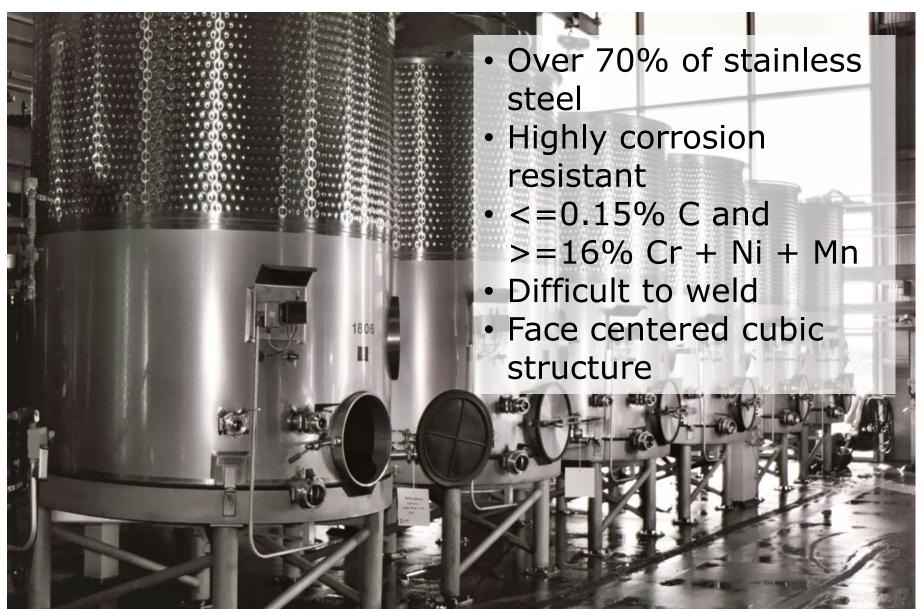
Air-hardening steels Die steel alloys Carbon/Tungsten alloys Hot work alloys Low alloy **Molybdenum alloys Oil hardening steels** Mold steel alloys **Shock resistant alloys Tungsten** alloys Water hardening steel

Comparison of Steel Properties

Stainless Steel

A NON-RUSTING STEEL.

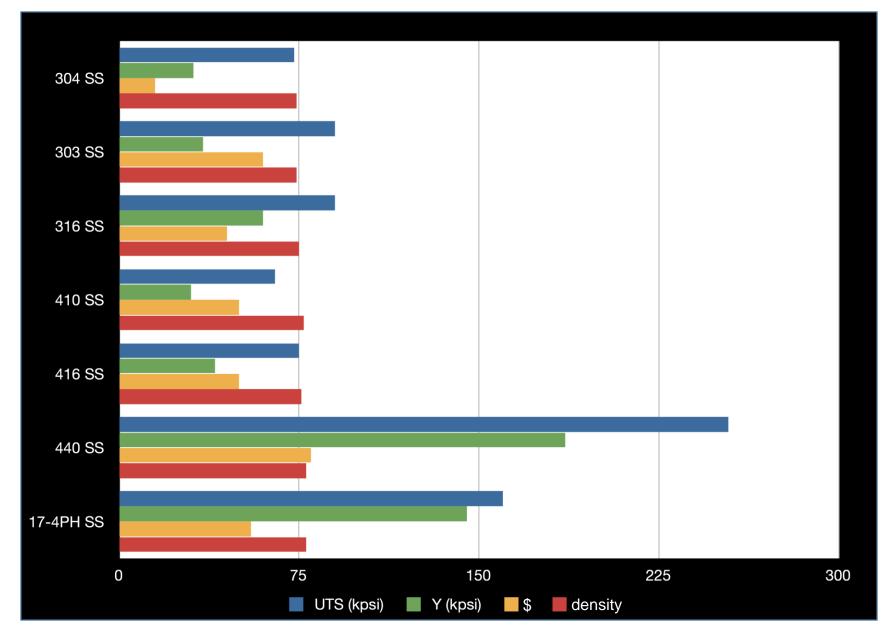
Sheffield Invention Especially Good for Table Cutlery.


According to Consul John M. Savage, who is stationed at Sheffield, England, a firm in that city has introduced a stainless steel, which is claimed to be non-rusting, unstainable, and untarishable. This steel is said to be especially adaptable for table cutlery, as the original polish is maintained after use, even when brought in contact with the most acid foods, and it requires only ordinary washing to cleanse.

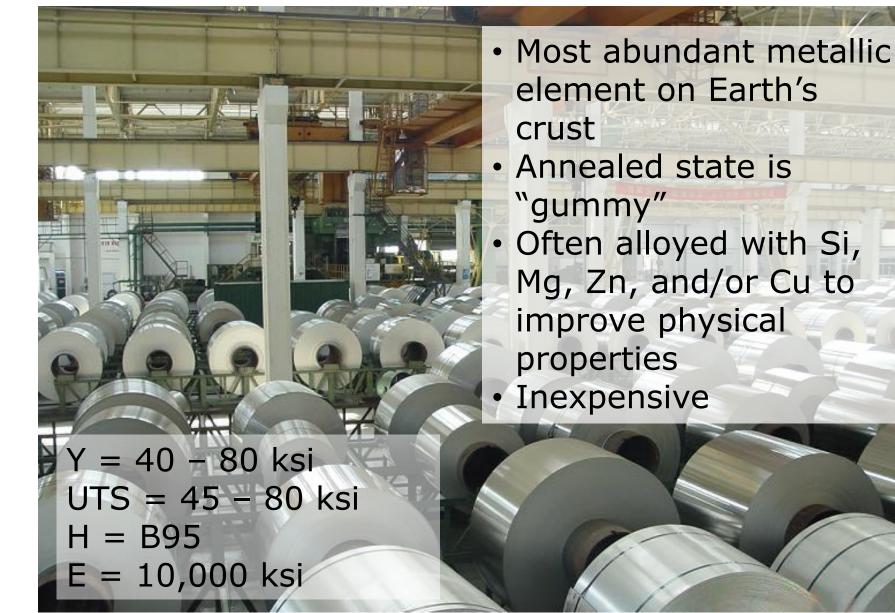
New York Times, Jan. 31, 1915

- Minimum 10% Cr by mass
- Corrosion-resistant
- Higher strength
- Higher cost
- Hard to machine

Austinitic Stainless Steel


Martensitic Stainless Steel

- Strong / tough
- Magnetic
- Body centered cubic structure
- Austinite at high temperatures converts to martensite


Types of Stainless Steel

Identification	Properties
303 (aus)	304 + S + P, free machining, difficult to weld
304 or 18/8 (aus)	Most common grade, forks, knives, weldable, corrodes in saltwater environments, 18% Cr and 8% Ni
316 (aus)	Marine grade, Mo provides corrosion resistance, food/surgical uses, machinability similar to 304
410 (mart)	Wear resistant, machinable, poor corrosion resistance
416 (mart)	+Si + S for easier machining
440 (mart)	Razor blade steel, high carbon content, poor machinability and weldability
17-4PH (mart)	Precipitation hardening, aircraft industry

Comparison of SS Properties


Aluminum

Types of Aluminum

Identification	Properties
2024	High strength, fatigue resistance, susceptible to corrosion (due to Cu), not weldable, +Cu (4.4%), Mg (1.4%), Mn (0.5%), traces of Si, Zn, Ni, Cr, Pb, Bi
6061	Most common, highly machinable, weldable, can be anodized, +Si (0.4 – 0.8%), Fe (0.7%), Cu (0.4%), Mn (0.15%), Mg (1%), Cr, Zn, Ti
7075	Aircraft grade, high strength, Zn (6%), Mg (2.3%), Cu (1.4%), traces of Si, Fe, Mn, Ti, Cr +others

Magnesium

Y = 7 ksi UTS = 53 ksi H = B70 E = 70,000 ksi

- Best strength/weight ratio of all structural materials (1/4 weight of steel, 1/3 weight of Al)
- Chips highly flammableUsed in engine blocks
- (Porsche, BMW, Corvette) and German military aircraft (WWI and WWII)

Titanium

Light and strong
Excellent corrosion resistance

- Hard to extract and expensive
- Difficult to machine

Y = 130 ksi UTS = 140 ksi H = B265 E = 16,000 ksi