

Why GD&T?

- Ensures interchangeability of parts during mating / assembly
- Saves money by avoiding unnecessary overtolerancing
- Avoids (legal, machining, inspection) ambiguity
- Contributes to functional gauging of surfaces and features by establishing datums of importance
- Influences order of manufacturing steps

ASME Y14.5M

Dimensions

Dimensions

- ϕ 1.50 MIN

Useful for defining min. dimensions when max. would not interfere with feature / part utility

Feature Control Frame

Geometric Control Symbols

_				Basic	Feature	Datum
Type	Geometric Characteristics		Pertains To	Dimensions	Modifier	Modifier
Form	—	Straightness	ONLY individual feature		Modifier not applicable	NO datum
	Ο	Circularity				
	\square	Flatness				
	10/	Cylindricity				
Profile	$\left(\right)$	Profile (Line)	Individual or related	Yes if		RFS implied unless MMC or LMC is stated
	\bigcirc	Profile (Surface)		related		
ntation	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Angularity	ALWAYS related fea- ture(s)	Yes	RFS implied unless MMC or LMC is stated	
		Perpendicularity				
Orie	//	Parallelism				
Location	Φ	Position		Yes		
	\odot	Concentricity				
	-	Symmetry				
out	ø	Circular Runout			Only RFS	Only RFS
Run	Ľ	Total Runout				

Adapted from Oberg's Machinary Handbook

Establishing Datums

Establishing Datums

Right Angle Plate

Coordinate Measuring Machines (CMMS)

Form (Straightness, —)

Lower parallel plane

All points that lie between two lines (upper and lower boundary) when measuring a line profile

Form (Circularity, \bigcirc)

All points of a plane perpendicular to a common axis are equidistant from that axis

Form (Cylindricity, /\/)

All points of the surface of a surface of revolution are equidistant from a common axis

Form (Flatness, \Box)

The distance between all elements in one plane when measured with reference to a reference plane

Profile (Line, \bigcirc or Surface, \bigcirc)

This distance between all points of a line profile or surface profile between two surfaces of the shape of the idealized surface

Orientation (Angularity, \angle)

The tolerance zone defined by two parallel planes or a cylinder at a specified angle from the datum plane

Orientation (Perpendicularity, \perp)

The tolerance zone of two parallel plates perpendicular to a datum within which a feature must lie

Orientation (Parallelism, //)

The tolerance zone of two parallel plates parallel to a datum within which a feature must lie

Location (Position, \oplus)

The exact location of a point, line, or surface in relation to another datum

Location (Concentricity, ())

The position of an axis in relation to another datum axis

Runout (Circular, /, and Total, //)

The deviation of the profile of an axisymmetric feature from a control (datum) axis

Turning

Lathe Terminology

Workholding (Collets)

Collets are located in the drawer in (or next to) the lathe

Collets sizes are selected based on the stock size

Workholding (3- and 4-Jaw Chucks)

3-Jaw Chucks

- Self-centering and quick clamping
- Cannot hold irregularly shaped work pieces

4-Jaw Chucks

- Admits square stock
- Off-center turning
- Mounting subject to eccentricities

Workholding (Tailstock)

The tailstock is used to hold the workpiece with a guide or to drill holes

Tooling

Facing/turning (carbide insert)

Part-off tool

Tool Post

The tool post connects the tool holder (tool) to the carriage

Turning Operations

Turning Operations

Turning Operations

Feeds and Speeds

Speed Equation for the Mill

Feeds and Speeds

Feeds and Speeds

Cutting Slots with the Mill

High speed steel slitting saws

Slow speed (300 – 500 RPM)
Conventional milling (avoid pulling at workpiece)