Lateness Policies

Part submissions

1 - 7 days late: 30% deduction7 - 14 days late: 60% deduction>14 days: 0%

Lecture assignment submissions Up to 24 hours late: 25% deduction 24 – 48 hours late: 50% deduction >48 hours late: 75% deduction

Lab quizzes

50% deduction for submission <u>after</u> your lab

The Stirling Engine

0.044

187

SEC

Foster Collins

8

Ð

0

00

S

XRI

683

VIEREAR WCFF

ès

History

- Patented in 1816
- Closed-cycle regenerative hot air engine
- Theoretical full Carnot
 efficiency
- Any heat source
- Semi-reversible

Dr. Robert L. Stirling

Operating Principles

Beta-type Stirling Engine

Heating the air dr chamber leads to an fo expansion of the working fluid PV = nRT

An increase in system pressure drives the piston forward

Energy is stored in the flywheel to ensure full return of piston and smooth operation

http://en.wikipedia.org/wiki/Stirling_engine

Operating Principles

V(cm³)

The Mill

Anatomy of a Vertical Mill

Types of Milling

End Mills

Square end (pocket machining, end milling, profile milling)

Roughing (large volume material removal)

Ball end (shaping)

Corner rounding (shaping – radii)

Types of Milling

Face Milling Tools

Fly Cutter (single cutting edge, low throughput, cheaper)

Face Mill

(multiple edges / carbide inserts, higher throughput / feed rate, more expensive)

Milling Techniques

Work Holding (Vise)

Work Holding (Parallels)

Work Holding (Parallels)

Work Holding (Vise Stop)

Accurate placement along the lateral axis of the mill

Feeds and speeds determine the efficacy of the cutting operation and are heavily influenced by the type of cutting operation, materials being cut, and the cutting bit.

Speed Equation

Feeds and Speeds (Speed Derivation)

 $v = r\omega_r$

Relationship between velocity and angular speed

ω_r [rad/min] = $2\pi\omega_c$ [rev/min]

Relationship between angular and rotational speed

$$r = \frac{1}{2}d$$

Relationship between radius and diameter

Feeds and Speeds (Speed Derivation)

$$\omega_c[\text{rev/min}] = \frac{\nu[\text{ft/min}]}{\pi d_{\text{[ft]}}}$$

Substituting values

$$d_{\text{[ft]}} = \frac{1}{12} d_{\text{[in]}}$$

Relationship between tool diameter in feet and inches

$$\omega_{c[\frac{\text{rev}}{\text{min}}]} = \frac{4\nu[\text{ft/min}]}{d_{[\text{in}]}}$$

Final result – look familiar!

Cutting Speed (SFPM = surface feet per minute)

Material Identity	High-speed Steel Cutting Tool	Carbide Cutting Tool
Plastics	500	800
Aluminum	300	600
Brass	200	400
Mild Steel	75	250
Stainless Steel	50	100

Feed Equation

Determined by the speed equation

Part Indication – Edge Finding

