Example

Two bugs are on a rotating turntable. The one at P is stationary on the turntable while the one at Q is moving radially away from P at a uniform speed. (the rate of change of r, the magnitude of PQ, is constant).

Choose $\theta = 0$.

Let both P and Q be instantaneously coincident, but Q is moving radially outward.
Example

The motor housing and its bracket rotate about the Z-axis at the constant rate $\Omega = 3 \text{ rad/s}$. The motor shaft and disk have a constant angular velocity of spin $p = 8 \text{ rad/s}$ with respect to the motor housing in the direction shown. If γ is constant at 30°, determine the velocity and acceleration of point A at the top of the disk and the angular acceleration α of the disk.

I – inertial frame
E – bracket
M – motor housing
D – disk
XYZ – fixed to the bracket
\hspace{2cm} (unit vectors – e_i)
xyz – fixed to the motor (unit vectors – m_i)
A disk of radius r is mounted on an axle OG of negligible mass. The disk rotates counter-clockwise rolling on the flat plate (fixed to the inertial frame) at the constant rate ω_1 about OG.

Determine the angular velocity and angular acceleration of the disk in an inertial frame.

Find the acceleration of the contact point P.
Example

A gyroscope consists of a rotor with its mass center fixed in space but which can spin freely about its geometric axis and assume any orientation.

• From a reference position with gimbals and a reference diameter of the rotor aligned, the gyroscope may be brought to any orientation through a succession of three steps:
 1) rotation of outer gimbal through ϕ about AA',
 2) rotation of inner gimbal through θ about BB',
 3) rotation of the rotor through ψ about CC'.

\[\dot{\phi} = \text{rate of precession} \]
\[\dot{\theta} = \text{rate of nutation} \]
\[\dot{\psi} = \text{rate of spin} \]

Determine the angular velocity and angular acceleration of the rotor in an inertial frame.