A rigid body B has a *simple angular velocity* in A, when there exists a unit vector \mathbf{k} whose orientation (as seen) in both A and in B is constant (independent of time).

Angular velocity of B in A
- is along \mathbf{a}_2 as seen in A
- is along \mathbf{b}_2 as seen in B

In each frame, the angular velocity has a constant direction (magnitude may change)
$D\omega_A$, $A\omega_B$ and $C\omega_B$ are simple angular velocities.

However, $D\omega_C$ is not a simple angular velocity. The motion of C relative to D is such that there is no vector fixed in D that also remains fixed in C. How about $D\omega_C$?
Addition Theorem for Angular Velocities

Let A, B, and C be three rigid bodies.

The addition theorem for angular velocities states:

\[
A_\omega^C = A_\omega^B + B_\omega^C
\]

Proof

Let r be fixed to C.

\[
\frac{A}{dt} \frac{dr}{dt} = \frac{B}{dt} \frac{dr}{dt} + A_\omega^B \times r
\]

\[
= \frac{C}{dt} \frac{dr}{dt} + B_\omega^C \times r + A_\omega^B \times r
\]

\[
= \frac{C}{dt} \frac{dr}{dt} + \left(B_\omega^C + A_\omega^B \right) \times r
\]

And,

\[
\frac{A}{dt} \frac{dr}{dt} = A_\omega^C \times r
\]
Angular velocities can be found by adding up “simple” angular velocities.

$D\omega^C$ is not a simple angular velocity. The motion of C relative to D is such that there is no vector fixed in D that also remains fixed in C.

But,

$$D\omega^C = D\omega^A + A\omega^B + B\omega^C$$

$D\omega^A$, $A\omega^B$ and $C\omega^B$ are simple angular velocities.
A disk of radius r is mounted on an axle OG. The disk rotates counterclockwise at the constant rate of ω_1 about OG.

Determine the angular velocity of the disk in an inertial frame.

Determine the velocity and acceleration of the point P in an inertial frame.
Example

The rolling (and sliding) disk on a horizontal plane

A circular disk \(C \) of radius \(R \) is in contact with a horizontal plane (not shown in the figure) at the point \(P \). The point \(P \) is attached to the disk. The plane is the \(x-y \) plane. It is rigidly attached to the earth. The standard reference triad \(\mathbf{b}_i \) is chosen so that \(\mathbf{b}_1 \) is along the direction of progression of the disk (parallel to the tangent to the disk at \(P \)), \(\mathbf{b}_2 \) is parallel to the plane of the disk, and \(\mathbf{b}_3 \) is normal to the disk. Note that this triad is not fixed to the disk. Call the earth-fixed reference frame \(A \) and choose the standard reference triad \(\mathbf{a}_x \), \(\mathbf{a}_y \), and \(\mathbf{a}_z \) in an obvious fashion along the \(x \), \(y \), and \(z \) axes shown in the figure.
Reference Triads

- Rotate triad \(A \) about \(z \) through \(q_1 \) followed by rotation about \(x \) by 90 deg to get \(E \)
- Rotate triad \(E \) about \(-x\) through \(q_2 \) to get \(B \)
- Rotate triad \(B \) about \(z \) through \(q_3 \) to get \(C \) (not shown)

Imagine \(E \) to be a virtual body that is attached to \(Q \)

Locus of the point of contact \(Q \) on the plane \(A \)

Imagine \(B \) to be a virtual body that is attached to \(C^* \)
Two coordinate transformations

- a_i in terms of e_i
- e_i in terms of b_i
Reference Triads

- Rotate triad A about z through q_1 followed by rotation about x by 90 deg to get E
- Rotate triad E about $-x$ through q_2 to get B
- Rotate triad B about z through q_3 to get C (not shown)

Imagine E to be a virtual body that is attached to Q

Locus of the point of contact Q on the plane A

Imagine B to be a virtual body that is attached to C^*

University of Pennsylvania
Transformations

Two coordinate transformations

- \(\mathbf{a}_i \) in terms of \(\mathbf{e}_i \)
- \(\mathbf{e}_i \) in terms of \(\mathbf{b}_i \)

\[
\begin{align*}
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos q_2 & -\sin q_2 \\
0 & \sin q_2 & \cos q_2
\end{bmatrix}
\begin{bmatrix}
\cos q_1 & \sin q_1 & 0 \\
0 & 0 & 1 \\
\sin q_1 & -\cos q_1 & 0
\end{bmatrix}
&= \\
\begin{bmatrix}
\cos q_1 & \sin q_1 & 0 \\
-\sin q_1 & \sin q_2 & \cos q_1 \sin q_2 & \cos q_2 \\
\sin q_1 \cos q_2 & -\cos q_1 \cos q_2 & \sin q_2
\end{bmatrix}
\end{align*}
\]
Angular Velocity: Components

\[A\omega^C = u_1 \mathbf{b}_1 + u_2 \mathbf{b}_2 + u_3 \mathbf{b}_3 \]

- \(u_i \) are the components of the angular velocity of the disk with respect to the reference triad \(B \)

\[A\omega^C = u_x \mathbf{a}_x + u_y \mathbf{a}_y + u_z \mathbf{a}_z \]

- \(u_\alpha \) are the components of the angular velocity of the disk with respect to the reference triad \(A \)

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5
\end{bmatrix} = \begin{bmatrix}
 \dot{q}_1 \\
 \dot{q}_2 \\
 \dot{q}_3 \\
 \dot{q}_4 \\
 \dot{q}_5
\end{bmatrix} = X
\]

\[
\begin{bmatrix}
 \dot{q}_1 \\
 \dot{q}_2 \\
 \dot{q}_3 \\
 \dot{q}_4 \\
 \dot{q}_5
\end{bmatrix} = \begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5
\end{bmatrix} = Y
\]