Position, Velocity and Angular Velocity Vectors
Position, Velocity and Acceleration Vectors

\(\mathbf{p} \) is a position vector of \(P \) in \(A \)
- Emanates from a point fixed to \(A \)
- Ends up at \(P \)

\(A \mathbf{v}^P \) is the velocity of \(P \) in \(A \)
\[
A \mathbf{v}^P = \frac{A \mathbf{d}\mathbf{p}}{dt}
\]

\(A \mathbf{a}^P \) is the acceleration of \(P \) in \(A \)
\[
A \mathbf{a}^P = \frac{A \mathbf{d}(A \mathbf{v}^P)}{dt}
\]

What if a different position vector were chosen?
Velocity of \(P \) in \(A \) is independent of choice of “origin” in \(A \)!

\(p \) is a position vector of \(P \) in \(A \)
- Emanates from a point fixed to \(A \)
- Ends up at \(P \)

\(A \mathbf{v}^P \) is the velocity of \(P \) in \(A \)

\[
A \mathbf{v}^P = \frac{A \mathbf{d} \mathbf{p}'}{dt} = \frac{A \mathbf{d}(\mathbf{p} + \mathbf{r})}{dt}
\]
A robotic arm is a system of rigid bodies (reference frames) \(B, C, \) and \(D \). \(A \) is the inertial or the laboratory reference frame that is considered fixed.

Example 1

1. Are the following equal?

\[
\frac{\partial \mathbf{p}}{\partial q_2} \quad \frac{A \partial \mathbf{p}}{\partial q_2} \quad \frac{B \partial \mathbf{p}}{\partial q_2} \quad \frac{C \partial \mathbf{p}}{\partial q_2}
\]

2. If motor (joint) rates are given, calculate \(\frac{A d\mathbf{p}}{dt} \)

\[
\frac{A d\mathbf{p}}{dt} = \frac{A \partial \mathbf{p}}{\partial q_1} \dot{q}_1 + \frac{A \partial \mathbf{p}}{\partial q_2} \dot{q}_2 + \frac{A \partial \mathbf{p}}{\partial q_3} \dot{q}_3
\]

3. Find the velocity of \(Q \) in \(A \)
The angular velocity of B in A, denoted by $^A \omega^B$, is defined as:

$$^A \omega^B = b_1 \left(\frac{A}{dt} b_2 \cdot b_3 \right) + b_2 \left(\frac{A}{dt} b_3 \cdot b_1 \right) + b_3 \left(\frac{A}{dt} b_1 \cdot b_2 \right)$$

- Defined in terms of a reference triad attached to B
- *Independent* of reference triad attached to A
- Generalizes to three dimensions
- Yields simple results for derivatives of vectors

Example

$$b_1 = a_1 \cos \theta + a_2 \sin \theta$$

$$b_2 = a_2 \cos \theta - a_1 \sin \theta$$
Alternative Formulation: Angular Velocity

B rotates as seen by an observer attached to A.

Consider the position vector, p, in A, of a point P fixed to B.

What is the velocity of P in A in terms of components with respect to the SRT a_i?

$$
\begin{align*}
\left[A \mathbf{v}^P \right]^A &= \frac{d}{dt} [p]^A \\
\frac{d}{dt}[p]^A &= \frac{d}{dt} \left(A R_B [p]^B \right)
\end{align*}
$$
Angular Velocity and Rotation Matrix

\[[A R_B] = \begin{bmatrix} b_1 \cdot a_1 & b_2 \cdot a_1 & b_3 \cdot a_1 \\ b_1 \cdot a_2 & b_2 \cdot a_2 & b_3 \cdot a_2 \\ b_1 \cdot a_3 & b_2 \cdot a_3 & b_3 \cdot a_3 \end{bmatrix} \]

Define (\(a db_i/dt\) = \(\dot{b}_i\))

\[\dot{[A R_B]} = \begin{bmatrix} \dot{b}_1 \cdot a_1 & \dot{b}_2 \cdot a_1 & \dot{b}_3 \cdot a_1 \\ \dot{b}_1 \cdot a_2 & \dot{b}_2 \cdot a_2 & \dot{b}_3 \cdot a_2 \\ \dot{b}_1 \cdot a_3 & \dot{b}_2 \cdot a_3 & \dot{b}_3 \cdot a_3 \end{bmatrix} \]

\[[A R_B]^T [A \dot{R}_B] = \begin{bmatrix} b_1 \cdot a_1 & b_2 \cdot a_1 & b_3 \cdot a_1 \\ b_1 \cdot a_2 & b_2 \cdot a_2 & b_3 \cdot a_2 \\ b_1 \cdot a_3 & b_2 \cdot a_3 & b_3 \cdot a_3 \end{bmatrix}^T \begin{bmatrix} \dot{b}_1 \cdot a_1 & \dot{b}_2 \cdot a_1 & \dot{b}_3 \cdot a_1 \\ \dot{b}_1 \cdot a_2 & \dot{b}_2 \cdot a_2 & \dot{b}_3 \cdot a_2 \\ \dot{b}_1 \cdot a_3 & \dot{b}_2 \cdot a_3 & \dot{b}_3 \cdot a_3 \end{bmatrix} \]

\[[A R_B]^T [A \dot{R}_B] = \begin{bmatrix} b_1 \cdot \dot{b}_1 & b_1 \cdot \dot{b}_2 & b_1 \cdot \dot{b}_3 \\ b_2 \cdot \dot{b}_1 & b_2 \cdot \dot{b}_2 & b_2 \cdot \dot{b}_3 \\ b_3 \cdot \dot{b}_1 & b_3 \cdot \dot{b}_2 & b_3 \cdot \dot{b}_3 \end{bmatrix} \]

\[[A R_B]^T [A \dot{R}_B] = \begin{bmatrix} 0 & -b_2 \cdot \dot{b}_1 & b_1 \cdot \dot{b}_3 \\ b_2 \cdot \dot{b}_1 & 0 & -b_3 \cdot \dot{b}_2 \\ -b_1 \cdot \dot{b}_3 & b_3 \cdot \dot{b}_2 & 0 \end{bmatrix} \]

Compare

\[A \omega^B = b_1 (\dot{b}_2 \cdot b_3) + b_2 (\dot{b}_3 \cdot b_1) + b_3 (\dot{b}_1 \cdot b_2) \]

The angular velocity vector can be obtained by differentiating the rotation matrix!
Recall every 3×1 vector \mathbf{a} has a 3×3 skew symmetric matrix counterpart \mathbf{A} or $\hat{\mathbf{a}}$

\[
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{bmatrix} \times \begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix} = \begin{bmatrix}
 a_2 b_3 - a_3 b_2 \\
 a_3 b_1 - a_1 b_3 \\
 -a_2 b_1 + a_1 b_2
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 0 & -a_3 & a_2 \\
 a_3 & 0 & -a_1 \\
 -a_2 & a_1 & 0
\end{bmatrix} \begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix}
\]

For any vector \mathbf{b}

\[
\mathbf{a} \times \mathbf{b} = \mathbf{A} \mathbf{b}
\]
Angular velocity components in A and B

A - Inertial

B - Body fixed frame

\[
\frac{d}{dt} [p]^A = \frac{d}{dt} (A R_B [p]^B) \quad \downarrow \quad = A \dot{R}_B [p]^B
\]

Components of $^A v^P$ in A

Pre multiply by $^B R_A$ to get components of $^A v^P$ in B

\[
\]

Components of position vector of P in A in B
Differentiation of vectors

1. Vector fixed to B

$$\mathbf{r} = r_1 \mathbf{b}_1 + r_2 \mathbf{b}_2 + r_3 \mathbf{b}_3$$

$$\frac{A \, d\mathbf{r}}{dt} = r_1 \frac{A \, d\mathbf{b}_1}{dt} + r_2 \frac{A \, d\mathbf{b}_2}{dt} + r_3 \frac{A \, d\mathbf{b}_3}{dt}$$

Composition and Projection rule

$$\frac{A \, d\mathbf{b}_1}{dt} = \left(\frac{A \, d\mathbf{b}_1}{dt} \cdot \mathbf{b}_1 \right) \mathbf{b}_1 + \left(\frac{A \, d\mathbf{b}_1}{dt} \cdot \mathbf{b}_2 \right) \mathbf{b}_2 + \left(\frac{A \, d\mathbf{b}_1}{dt} \cdot \mathbf{b}_3 \right) \mathbf{b}_3$$

$$-\left(\mathbf{b}_1 \cdot \frac{A \, d\mathbf{b}_3}{dt} \right)$$
Differentiation of vectors (cont’d)

\[A_\omega B \times b_1 = \left[b_1 \left(\frac{A\,db_2}{dt}.b_3 \right) + b_2 \left(\frac{A\,db_3}{dt}.b_1 \right) + b_3 \left(\frac{A\,db_1}{dt}.b_2 \right) \right] \times b_1 \]

\[\frac{A\,db_1}{dt} = \left(\frac{A\,db_1}{dt}.b_2 \right) b_2 - \left(\frac{A\,db_3}{dt}.b_1 \right) b_3 \]

Important Result 1

\[\frac{A\,db_i}{dt} = A_\omega B \times b_i \]

Important Result 2

\[\frac{A\,dr}{dt} = r_1 \frac{A\,db_1}{dt} + r_2 \frac{A\,db_2}{dt} + r_3 \frac{A\,db_3}{dt} \]

\[= r_1 A_\omega B \times b_1 + r_2 A_\omega B \times b_2 + r_3 A_\omega B \times b_3 \]

\[= A_\omega B \times r \]
Example 2

\[\frac{B}{dt} \frac{dr}{dt} = ? \]

2. Assuming B is fixed to A

\[\frac{A}{dt} \frac{dr}{dt} = ? \]
Velocity of P (attached to B) in A when A and B have a common point O

Choose \mathbf{p} to be a position vector of P in A

$$\mathbf{v}_P^A = \frac{d\mathbf{p}}{dt} = \omega^B \times \mathbf{p}$$
Differentiation of vectors

2. Vector not fixed to B

\[
\frac{A}{dt} \mathbf{r} = \frac{d\mathbf{r}_1}{dt} \mathbf{b}_1 + \frac{d\mathbf{r}_2}{dt} \mathbf{b}_2 + \frac{d\mathbf{r}_3}{dt} \mathbf{b}_3 + r_1 \frac{A}{dt} \mathbf{b}_1 + r_2 \frac{A}{dt} \mathbf{b}_2 + r_3 \frac{A}{dt} \mathbf{b}_3
\]

\[
= \frac{B}{dt} \mathbf{r} + A \omega^B \times \mathbf{r}
\]

\[
\frac{A}{dt} \mathbf{r} = \frac{B}{dt} \mathbf{r} + A \omega^B \times \mathbf{r}
\]

r can be any vector
A rigid body B has a *simple angular velocity* in A, when there exists a unit vector \mathbf{k} whose orientation (as seen) in both A and in B is constant (independent of time).

Angular velocity of B in A
- is along \mathbf{a}_2 as seen in A
- is along \mathbf{b}_2 as seen in B

In each frame, the angular velocity has a constant direction (magnitude may change)
Simple Angular Velocity

$D \omega_A$, $A \omega_B$ and $C \omega_B$ are simple angular velocities.

However, $D \omega_C$ is not a simple angular velocity. The motion of C relative to D is such that there is no vector fixed in D that also remains fixed in C.

How about $D \omega_C$?
Addition Theorem for Angular Velocities

Let A, B, and C be three rigid bodies.

The addition theorem for angular velocities states:

$$A \omega^C = A \omega^B + B \omega^C$$

Proof

Let \mathbf{r} be fixed to C.

$$\frac{A \, d\mathbf{r}}{dt} = \frac{B \, d\mathbf{r}}{dt} + A \omega^B \times \mathbf{r}$$

$$= \frac{C \, d\mathbf{r}}{dt} + B \omega^C \times \mathbf{r} + A \omega^B \times \mathbf{r}$$

$$= \frac{C \, d\mathbf{r}}{dt} + \left(B \omega^C + A \omega^B \right) \times \mathbf{r}$$

$$= \left(B \omega^C + A \omega^B \right) \times \mathbf{r}$$

And,

$$\frac{A \, d\mathbf{r}}{dt} = A \omega^C \times \mathbf{r}$$
Angular velocities can be found by adding up “simple” angular velocities

\[D\vec{\omega}^C \] is not a simple angular velocity. The motion of \(C \) relative to \(D \) is such that there is no vector fixed in \(D \) that also remains fixed in \(C \).

But,

\[D\vec{\omega}^C = D\vec{\omega}^A + A\vec{\omega}^B + B\vec{\omega}^C \]

\(D\vec{\omega}^A, A\vec{\omega}^B \) and \(C\vec{\omega}^B \) are simple angular velocities.
A disk of radius r is mounted on an axle OG. The disk rotates counter-clockwise at the constant rate of ω_1 about OG.

Determine the angular velocity of the disk in an inertial frame if the disk rolls on the plane.

Determine the velocity and acceleration of the point P in an inertial frame.
Example 3 (continued)
The rolling (and sliding) disk on a horizontal plane

A circular disk C of radius R is in contact with a horizontal plane (not shown in the figure) at the point P. The point P is attached to the disk. The plane is the x-y plane. It is rigidly attached to the earth. The standard reference triad \mathbf{b}_i is chosen so that \mathbf{b}_1 is along the direction of progression of the disk (parallel to the tangent to the disk at P), \mathbf{b}_2 is parallel to the plane of the disk, and \mathbf{b}_3 is normal to the disk. Note that this triad is not fixed to the disk. Call the earth-fixed reference frame A and choose the standard reference triad \mathbf{a}_x, \mathbf{a}_y, and \mathbf{a}_z in an obvious fashion along the x, y, and z axes shown in the figure.
Reference Triads

- Rotate triad A about z through q_1 followed by rotation about x by 90 deg to get E
- Rotate triad E about $-x$ through q_2 to get B
- Rotate triad B about z through q_3 to get C (not shown)

Imagine E to be a virtual body that is attached to Q

Imagine B to be a virtual body that is attached to C^*

Locus of the point of contact Q on the plane A
Find the transformation

- a_i in terms of b_i
Transformations

Two coordinate transformations

- \(\mathbf{a}_i \) in terms of \(\mathbf{e}_i \)

\[E \mathbf{R}_A \]

- \(\mathbf{e}_i \) in terms of \(\mathbf{b}_i \)

\[B \mathbf{R}_E \]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos q_2 & -\sin q_2 \\
0 & \sin q_2 & \cos q_2
\end{bmatrix}
\begin{bmatrix}
\cos q_1 & \sin q_1 & 0 \\
0 & 0 & 1 \\
\sin q_1 & -\cos q_1 & 0
\end{bmatrix}
= \begin{bmatrix}
\cos q_1 & \sin q_1 & 0 \\
-sin q_1 \sin q_2 & \cos q_1 \sin q_2 & \cos q_2 \\
\sin q_1 \cos q_2 & -\cos q_1 \cos q_2 & \sin q_2
\end{bmatrix}
\]
Angular Velocity: Components

\[A \omega^C = u_1 \mathbf{b}_1 + u_2 \mathbf{b}_2 + u_3 \mathbf{b}_3 \]

- \(u_i \) are the components of the angular velocity of the disk with respect to the reference triad \(B \)

\[\dot{u}_i \]

\[A \omega^C = u_x \mathbf{a}_x + u_y \mathbf{a}_y + u_z \mathbf{a}_z \]

- \(u_\alpha \) are the components of the angular velocity of the disk with respect to the reference triad \(A \)

\[\dot{u}_\alpha \]