1. Convolution

Assume we have the following 1D image I and symmetric filter f:

$$I = [0.3 \ 0.4 \ 0.9 \ 0 \ 0.2 \ 0.1 \ 0.4 \ 0.9 \ 0] \quad f = [0.2 \ 0.2 \ 0.2 \ 0.2]$$

- Convolve I with f assuming around-boundary reflection padding. Show your computations.

- The above filter f is called a box blur. Traditionally, we have used a Gaussian blurring filter in this class. Give an example of an application in computer vision in which the Gaussian blur may have an advantage over the box blur.

- Separate the following two-dimensional filter into a one-dimensional horizontal filter and a one-dimensional vertical filter.

$$I = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

2. Deconvolution

Deconvolution is the process of recovering the input kernel or image from the convolved result. Let I be a 5×5 image:

$$I = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

After convolving image I by a 3×3 kernel k you obtain the following image J:

$$J = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \\ 2 & 6 & 8 & 6 & 2 \\ 1 & 4 & 6 & 4 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{bmatrix}$$

Given $J = I \otimes k$, and knowing I, what is the kernel k?

3. Affine Transformation
As discussed in class, both lines and points can be represented as triplets of numbers in homogeneous coordinates. Homogeneous coordinates for lines l_1, l_2, l'_1, l'_2 and points A, B, A', B' have been given below. This information is sufficient to determine a transformation between I and I'.

$$ A = (-1, 2) \quad B = (3, 5) $$

$$ A' = (-2, 2\sqrt{3}) \quad B' = (4\sqrt{3} - 5, 4 + 5\sqrt{3}) $$

$$ l_1 : 3x - y - 10 = 0 \quad l_2 : x + y - 6 = 0 $$

$$ l'_1 : \frac{3\sqrt{3} + 1}{4}x + \frac{3 - \sqrt{3}}{4}y - 13 = 0 \quad l'_2 : \frac{\sqrt{3} - 1}{4}x + \frac{\sqrt{3} + 1}{4}y - 7 = 0 $$

- Calculate the intersection of l_1, l_2 and also the intersection of l'_1 and l'_2 with homogeneous coordinates.
- You are told that the transformation mapping I to I' is an Affine transformation involving a rotation, scale and translation (in that order).
There exists a point P in I such that

$$P = (2, 3)$$

Utilizing the concepts studied in class and applied in project 2, compute the position of the warp of P, P' in I'.

4. Exploring Estimate TPS

A TPS model is built by solving a set of linear equations such that the model maps the control points to the target points. This model consists of 3 affine parameters and a weighted combination of functions centered on each control point. This problem attempts to illustrate what the estimate TPS function is doing on a simpler problem in one dimension.

Consider the plot above. We want to find a function that maps the control points to the target points (2 to 0, 4 to 8, 6 to 20). Our model will be:

$$f(x) = \sum_{i=1}^{3} w_i U_i(x)$$

Where the U_i are basis functions given by the plots below and the w_i are the parameters in the model. (Note that the affine terms that would be present in a TPS model have been removed to reduce the number of variables)

Solve for w_1, w_2, and w_3.
5. Image Stitching

The task is to stitch images A, B and C together. After computing feature matching and RANSAC, we determine the homography transformation for warping points from image A to
image B as T_B^A and from image C to image B as T_C^B.

\[
T_B^A = \begin{bmatrix}
1 & -1/5 & -300 \\
1/3 & 1 & -150 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{and} \quad
T_C^B = \begin{bmatrix}
3/4 & 1/5 & 30 \\
-1/3 & 1 & 30 \\
0 & 0 & 1
\end{bmatrix}.
\]

• The size of A, B, and C is 601 rows (height) and 501 columns (width), i.e., (500, 600). The origin is (0, 0).

Let A_{morph} (C_{morph}) be the image resulting from transformation T_B^A (T_C^B), which aligns with image B.

What are the spatial extent of the morphed images A_{morph} and C_{morph}? What is the size (height and width) of stitched image S?

6. RANSAC

A transformation from triangle A in image 1 to triangle B in image 2 can be modeled as an affine transformation. Because of noise in the data, we decide to use RANSAC for affine fitting.
• Provide a description of how RANSAC works here for this task. It could be a paragraph or pseudo code.
You may assume that you have points correspondences between images, a function to calculate the affine transformation, and a function to compute the distance of a point to the triangle.
• Assume that there are 20% outliers, what is the minimum number of RANSAC iterations needed to get, with probability 90%, at least one random sample that is free from outliers?

<table>
<thead>
<tr>
<th>(\log_{10} n)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>0.48</td>
</tr>
<tr>
<td>5</td>
<td>0.70</td>
</tr>
<tr>
<td>7</td>
<td>0.85</td>
</tr>
<tr>
<td>37</td>
<td>1.57</td>
</tr>
<tr>
<td>61</td>
<td>1.79</td>
</tr>
<tr>
<td>89</td>
<td>1.95</td>
</tr>
</tbody>
</table>