Gradient domain blending is a blending technique, which was first proposed in [1]. While blending image G into image S, Gradient domain blending uses derivatives of G as reference, rather than directly copy the intensity value form G. This makes the blending more natural, and work with images with different color, shade, and illumination. Gradient domain blending is first formulated as a continuous Poisson problem, and then discretized using image grids. You are recommended to read [1] for more theory behind it.

Figure 1 illustrates the notations: let S be the image definition domain, and let Ω be a closed subset of S with boundary $\partial \Omega$. Let g be the subset of image G to be blended, and v be the gradient field of g. v would be used as the reference in later blending. Let f^* be a known scalar function defined over S minus the interior of Ω and let f be an unknown scalar function defined over the interior of Ω. Note that after discretization, all the variables are defined in finite image grids. For each pixel p in S, let N_p be the set of its 4-connected neighbors in S, and let $< p, q >$ denote a pixel pair such that $q \in N_p$.

The insight in gradient domain blending is that, after blending, the derivative of g remains while intensity values are consistent with image S on the blending boundary. The problem can be formulated as the optimization:

$$\min_{f|\Omega} \sum_{<p,q> \cap \Omega \neq \emptyset} (f_p - f_q - v_{pq})^2, \text{ with } f_p = f^*_p \text{ for all } p \in \partial \Omega$$

where v_{pq} is the projection of $v\left(\frac{p+q}{2}\right)$ on the oriented edge $[p, q]$.

Its solution satisfies the following simultaneous linear equations:

$$\text{for all } p \in \Omega, |N_p| f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \Omega} f^*_q + \sum_{q \in N_p} v_{pq}$$

The discretized pseudo code version is as below:

$$4f_{(row, col)} - f_{(row-1, col)} - f_{(row, col-1)} - f_{(row+1, col)} - f_{(row, col+1)} = \text{desired gradient}$$

where $f_{(row, col)}$ is the image pixel intensity in image (row, col), and desired gradient is $|(dx, dy)|$. Therefore, you could form a sparse, symmetric, and positive-definite linear system. Solving this linear system yields
final blending results.

Figure 2: Example for gradient domain blending.