CIS581: Computer Vision and Computational Photography
Homework: Cameras and Convolution
Due: Sept. 11, 2018 at 3:00 pm

Instructions

• This is an individual assignment. 'Individual’ means each student must hand in their own answers, and each student must write their own code in the homework. It is admissible for students to collaborate in solving problems. To help you actually learn the material, what you write down must be your own work, not copied from any other individual. You must also list the names of students (maximum two) you collaborated with.

• You must submit your solutions online on Canvas. We recommend that you use \LaTeX, but we will accept scanned solutions as well. Please place your homework (.pdf), code, images and any additional files into the top level of a single folder named <PennKey>.zip

• Notation Clarification For notations in all questions below, we denote I as input image, f as kernel and g as output image. In addition, questions are independent of each other except additional notifications.

• Start early! If you get stuck, please post your questions on Piazza or come to office hours!

1 Getting Started

1.1 Introduction to MATLAB / Python

In this question, you will be required to build upon the starter code provided, to read in an image and apply the Sobel operator to it. The kernel which highlights the vertical edges when convolved with an image has been given to you in the code. You need to perform the following tasks:

1. Read in the image Bikesgray.jpg into the variable img_1
2. Convolve the image with the given kernel f_1
3. Display and save the result of the convolution
4. Come up with a kernel f_2 similar to f_1, but one which causes the horizontal edges to be highlighted
5. Convolve the image img_1 with kernel f_2
6. Display and save the result of the convolution.

• Question 1.1: Please implement the above via MATLAB or Python. Submit your code and the two images generated as a result of the convolution with kernels f_1 and f_2 respectively.

1.2 Filtering

Recall the definition of filtering is as follows:

$$g(i, j) = \sum_{m,n} I(i + m, j + n) * f(m, n) = I \ast f$$ (1)

where I is the image, f is the kernel for filtering.
• **Question 1.2:** Using the I and f given below, check if the commutative property $(I \circ f \equiv f \circ I)$ holds for the filtering operation. Show by hand how you arrived at your answer. Assume zero-padding along the boundary, and 'same' output size.

$$I = \begin{bmatrix} 0.5 & 2.0 & 1.5 \\ 0.5 & 1.0 & 0.0 \\ 2.0 & 0.5 & 1.0 \end{bmatrix}$$ (2)

$$f = \begin{bmatrix} 0.5 & 1.0 & 0.0 \\ 0.0 & 1.0 & 0.5 \\ 0.5 & 0.0 & 0.5 \end{bmatrix}$$ (3)

Note: The matrices for I and f given in Eq. 2 and 3 respectively are to be used only for Question 1.2.

2 Convolution

Recall the definition of convolution,

$$g = I \otimes f$$ (4)

where I and f represents the image and kernel respectively.

Typically, when kernel f is a 1-D vector, we get

$$g(i) = \sum_m I(i-m)f(m)$$ (5)

where i is the index in the row or column dimension.

If the kernel f is a 2-D kernel, we have

$$g(i, j) = \sum_{m,n} I(i-m, j-n)f(m,n)$$ (6)

where i and j are the row and column indices respectively.

In this section, you need to perform the convolution by hand, get familiar with convolution in both 1-D and 2-D as well as its corresponding properties.

Note: All convolution operations in this section follow except additional notifications: 1. Zero-Padding, 2. Same Output Size, 3. An addition or multiplication with 0 will count as one operation.

For this problem, we will use the following 3×3 image:

$$I = \begin{bmatrix} 0.0 & 1.0 & -1.0 \\ 2.0 & 1.0 & 0.0 \\ 0.0 & 3.0 & -1.0 \end{bmatrix}$$ (7)

You are given two 1-D vectors for convolution:

$$f_x = [-1.0 \ 0.0 \ 1.0]$$ (8)

$$f_y = \begin{bmatrix} 1.0 & 1.0 & 1.0 \end{bmatrix}^T$$ (9)

Let $g_1 = I \otimes f_x \otimes f_y$, $f_{xy} = f_x \otimes f_y$ and $g_2 = I \otimes f_{xy}$.

Note: f_{xy} should be full output size.

• **Question 2.1:** Compute g_1 and g_2 (At least show two steps for each convolution operation and intermediate results), and verify the associative property of convolution.

• **Question 2.2:** How many operations are required for computing g_1 and g_2 respectively? Show addition and multiplication times in your result.

• **Question 2.3:** What does convolution do to this image?
3 Kernel Estimation

Recall the special case of convolution discussed in class: The Impulse function. Using an impulse function, it is possible to ‘shift’ (and sometimes also ‘scale’) an image in a particular direction.

For example, when the following image
\[
I = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{bmatrix}
\]

is convolved with the kernel,
\[
f = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

it results in the output:
\[
g = \begin{bmatrix}
e & f & 0 \\
h & i & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Another useful trick to keep in mind is the decomposition of a convolution kernel into scaled impulse kernels. For example, a kernel
\[
f = \begin{bmatrix}
0 & 0 & 7 \\
0 & 0 & 0 \\
0 & 4 & 0
\end{bmatrix}
\]

can be decomposed into
\[
f_1 = 7 \ast \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
\[
\text{and } f_2 = 4 \ast \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

- **Question 3**: Using the two tricks listed above, estimate the kernel \(f\) by hand which when convolved with an image
\[
I = \begin{bmatrix}
1 & 5 & 2 \\
7 & 8 & 6 \\
3 & 9 & 4
\end{bmatrix}
\]

results in the output image
\[
g = \begin{bmatrix}
29 & 43 & 10 \\
62 & 52 & 30 \\
15 & 45 & 20
\end{bmatrix}
\]

Hint: Look at the relationship between corresponding elements in \(g\) and \(I\).

4 Edge Moving

Object Recognition is one of the most popular applications in Computer Vision. The goal is to identify the object based on a template or a specific pattern of the object that has been learnt from a training dataset. Suppose we have a standard template for a “barrel” which is a \(3 \times 3\) rectangle block in a \(4 \times 4\) image. We also have an input \(4 \times 4\) query image. Now, your task is to verify if the image in question contains a barrel. After preprocessing and feature extraction, the query image is simplified as \(I_Q\) and the barrel template is \(I_T\).

\[
I_Q = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad I_T = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

Instinctively, the human eye can automatically detect a potential barrel in the top left corner of the query image but a computer can’t do that right away. Basically, if the computer finds that the difference between
query image’s features and the template’s features are minute, it will prompt with high confidence: ’Aha! I have found a barrel in the image’. However, in our circumstance, if we directly compute the pixel wise distance D between I_Q and I_T where

$$D(I_Q, I_T) = \sum_{i,j} (I_Q(i, j) - I_T(i, j))^2 \quad (16)$$

we get $D = 10$ which implies that there’s a huge difference between the query image and our template. To fix this problem, we can utilize the power of the convolution. Let’s define the ’mean shape’ image I_M which is the blurred version of I_Q and I_T.

$$I_M = \begin{bmatrix}
0.25 & 0.5 & 0.5 & 0.25 \\
0.5 & 1 & 1 & 0.5 \\
0.5 & 1 & 1 & 0.5 \\
0.25 & 0.5 & 0.5 & 0.25
\end{bmatrix}$$

- **Question 4.1:** Compute two 3×3 convolution kernels f_1, f_2 by hand such that $I_Q \otimes f_1 = I_M$ and $I_T \otimes f_2 = I_M$ where \otimes denotes the convolution operation. (Assume zero-padding)

- **Question 4.2:** For a convolution kernel $f = (f_1 + f_2)/2$, we define $I_Q' = I_Q \otimes f$ and $I_T' = I_T \otimes f$. Compute I_Q', I_T' and $D(I_Q', I_T')$ by hand. Compare it with $D(I_Q, I_T)$ and briefly explain what you find.