
Hierarchy of Transformations

Euclidean (3 dof) Similarity (4 dof) Affine (6 dof) Projective (8 dof)
• Length
• Angle
• Area

• Length ratio
• Angle

• Parallelism
• Ratio of area
• Ratio of length

• Cross ratio
• Concurrency
• Colinearity
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Fun with Homography

v1 v2

v3v4

H

The image can be rectified as if it is seen from top view.



Fun with Homography
u = [u1'; u2'; u3'; u4'];
v = [v1'; v2'; v3'; v4'];

% Need at least non‐colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, H);
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u4

RectificationViaHomography.m



Fun with Homography
u = [u1'; u2'; u3'; u4'];
v = [v1'; v2'; v3'; v4'];

% Need at least non‐colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, H);
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u4

RectificationViaHomography.m

u_x = H(1,1)*v_x + H(1,2)*v_y + H(1,3);
u_y = H(2,1)*v_x + H(2,2)*v_y + H(2,3);
u_z = H(3,1)*v_x + H(3,2)*v_y + H(3,3);

u_x = u_x./u_z;
u_y = u_y./u_z;

im_warped(:,:,1) = reshape(interp2(im(:,:,1), u_x(:), u_y(:)), [h, w]);
im_warped(:,:,2) = reshape(interp2(im(:,:,2), u_x(:), u_y(:)), [h, w]);
im_warped(:,:,3) = reshape(interp2(im(:,:,3), u_x(:), u_y(:)), [h, w]);

im_warped = uint8(im_warped);

ImageWarping.m
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y y
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u_x = H(1,1)*v_x + H(1,2)*v_y + H(1,3);
u_y = H(2,1)*v_x + H(2,2)*v_y + H(2,3);

Cf) ImageWarpingEuclidean.m
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Fun with Homography



Morphing = Object Averaging

“an average” between two objects
Not an average of two images of objects…
…but an image of the average object!



Morphing = Object Averaging

How do we know what the average object looks like?
– We haven’t a clue!
– But we can often fake something reasonable



Morphing = Warping + Cross Dissolving 



P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 Q

Averaging Points

What’s the average
of P and Q?



P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 QLinear Interpolation

(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

Averaging Points

What’s the average
of P and Q?



P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 Q

P + 1.5v
=  P + 1.5(Q – P)
=  -0.5P + 1.5 Q
(extrapolation)

Averaging Points



P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 Q

P + 1.5v
=  P + 1.5(Q – P)
=  -0.5P + 1.5 Q
(extrapolation)

Averaging Points

• P and Q can be anything:
– points on a plane (2D) or in space (3D)
– Colors in RGB or HSV (3D)
– Whole images (m-by-n D)… etc.



Averaging Images: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry



Averaging Images: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry



t = 0.5 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects



t = 0.3 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects



t = 0.7 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects



Image1 Image2

+ = ?

Averaging Images



Image1 Image2

+ =
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Averaging Images



Image1 Image2

+ =

Averaging Images

Averaging Images != Rotating Complex Objects



=+ +

Averaging Images

Averaging ‘Eigen’ Images = Rotating Objects



Cat-Baby Averaging

Object Averaging with feature matching!
Nose to nose, eye to eye, mouth to mouth, etc.

This is a non-parametric warp



Cat-Baby Averaging

Object Averaging with feature matching (warping)!
– Nose to nose, eye to eye, mouth to mouth, etc.

– This is a non-parametric warp



Warping, then cross-dissolve

Morphing procedure: 

1. Find the average shape 
2. Non-parametric warping
3. Find the average color

– Cross-dissolve the warped images



Image warping – non-parametric



Image warping idea 1: dense flow

Displacement vector (u,v) for each pixel.

Great details… but too much work, let’s simply it to mesh grid



Define and manipulate the mesh grid

warp the mesh grid

Image warping idea 2 : dense grid



Grid deformation generates expression change

Image warping idea 2 : dense grid



Still too much work…
simplify it to sparse control points and triangles

warp the mesh grid

Image warping idea 2 : dense grid



Specify sparse points and their correspondence

Image warping idea 3 : sparse points



• Define a triangular mesh over the feature points

• Triangle-to-triangle correspondences

• Warp each triangle separately from source to destination

Image warping idea 3 : sparse points



• Warping on triangulation corresponds to warping on dense grid, 
and dense pixel flow

From sparse points to dense grid



Delaunay Triangulation

• Draw the dual to the Voronoi diagram 
by connecting each two neighboring 
sites in the Voronoi diagram.

• The DT may be constructed in 
O(nlogn) time.

• This is what Matlab’s delaunay
function uses.



What is good feature points

• The triangulation is consistent with image boundary
– Texture regions won’t fade into the background when morphing

• Maintain the relationship between parts

Good Bad



Triangulations

• A triangulation of set of points in the plane is a 
partition of the convex hull to triangles whose vertices 
are the points, and do not contain other points.

• There are an exponential number of triangulations of 
a point set.



An O(n3) Triangulation Algorithm

• Repeat until impossible:
– Select two sites.

– If the edge connecting them does not intersect previous 
edges, keep it.



“Quality” Triangulations

• Let (T) = (1, 2 ,.., 3t) be the vector of angles in 
the triangulation T in increasing order.

• A triangulation T1 will be “better” than T2 if (T1) > 
(T2) lexicographically.

• The Delaunay triangulation is the “best”
– Maximizes smallest angles

good bad



Boris Nikolaevich Delaunay (March 15, 1890 – July 17, 1980) 

Delaunay
bad

http://higeom.math.msu.su/history/delone_r.html



Improving a Triangulation
• In any convex quadrangle, an edge flip is possible. If 

this flip improves the triangulation locally, it also 
improves the global triangulation.

If an edge flip improves the triangulation, the first edge 
is called illegal.



Illegal Edges
• Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by 

the other three vertices.
• Proof: By Thales’ theorem.

Theorem: A Delaunay triangulation does not contain illegal edges.
Corollary: A triangle is Delaunay iff the circle through its vertices is 

empty of other sites.
Corollary: The Delaunay triangulation is not unique if more than 

three sites are co-circular.

p

q



Naïve Delaunay Algorithm

• Start with an arbitrary triangulation. Flip any illegal edge until no more exist.

• Could take a long time to terminate.



Delaunay Triangulation by Duality

• General position assumption: There are no 
four co-circular points.

• Draw the dual to the Voronoi diagram by 
connecting each two neighboring sites in the 
Voronoi diagram.

• Corollary: The DT may be constructed in 
O(nlogn) time.

• This is what Matlab’s delaunay function 
uses.



Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points
– Same mesh in both images!

– Now we have triangle-to-triangle correspondences



Warp interpolation
• How do we create an intermediate warp at time t?

– Assume t = [0,1]

– Simple linear interpolation of each feature pair

– (1-t)*p0+t*p1 for corresponding features p0 and p1



• For each time t, define the intermediate shape
– 𝑝௧ ൌ 1 െ 𝑡 ൈ 𝑝ଵ ൅ 𝑡 ൈ 𝑝ଶ
– triangulation doesn’t change

• Warp both image to the intermediate shape
• Dissolve image = (1-t)ൈimage1 + tൈImage2

Cross 
Dissolve

Image warping

Average shape

+

Morphing = Warping + Cross-dissolve



Morphing Sequence

t=0

warped 
image 1

warped 
image 2

morph 
result

t=0.3 t=0.5 t=0.7 t=1



An Example



Morphing

t = 0.3 t = 1t = 0
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Step 1: Triangle interpolation

t = 0.3 t = 1t = 0
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C1t S Tt t A = A A( )

1t S Tt t B = B B( )
1t S Tt t C = C C( )



Step 2: Warping
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Step 2: Warping
A௦

B௦

C௦
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Image warping: from source triangle to the mean triangle
A

B

C



Triangle warping = Affine transform
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x tx  

Affine transform is a pixel transportation 
It is controlled by the movement of the three vertices of the triangle

C௦

x tx  
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C௦

Barycentric Coordinates

Each point      has an invariant representation with respect to 
the three vertices.
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Barycentric Coordinates



   x = A B C 1    

B
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 B - A)(

 C A( )

    x = A B A C A( ) ( )

1       x = A B C( )

C௦

Barycentric Coordinates
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linear equations in 3 unknowns
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Barycentric Coordinates
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Warping with Barycentric Coordinate
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Warping with Barycentric Coordinate
X coordinate

Y coordinate
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X coordinate

Y coordinate
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Warping with Barycentric Coordinate



Grids before and after warping
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Step 3: Average warped image
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Warping and Cross Dissolve



Inverse warping from the source image

t = 0.3 t = 1t = 0
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Inverse warping from target image

t = 0.3 t = 1t = 0
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Step 3: averaging warped image

t = 0.3 t = 1t = 0 A

B

C

A

B

C



Warping, then cross-dissolve

Morphing procedure: 
for every t,
1. Find the average shape 
2. Non-parametric warping
3. Find the average color

– Cross-dissolve the warped 
images


