
Hierarchy of Transformations

Euclidean (3 dof) Similarity (4 dof) Affine (6 dof) Projective (8 dof)
• Length
• Angle
• Area

• Length ratio
• Angle

• Parallelism
• Ratio of area
• Ratio of length

• Cross ratio
• Concurrency
• Colinearity

x

y

cos sin

sin cos

1

 
 
 
  

t
t

θ θ
θ θ

x

y

cos sin

sin cos

1

 
 
 
 
 
  

t
t

θ θ
θ θ

11 12 13

21 22 23

0 0 1

 
 
 
  

a a a

a a a
11 12 13

21 22 23

31 32 1

 
 
 
  

h h h

h h h
h h

u1

u2

u3

u4

Fun with Homography

v1 v2

v3v4

H

The image can be rectified as if it is seen from top view.

Fun with Homography
u = [u1'; u2'; u3'; u4'];
v = [v1'; v2'; v3'; v4'];

% Need at least non‐colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, H);

u1

u2

u3

u4

RectificationViaHomography.m

Fun with Homography
u = [u1'; u2'; u3'; u4'];
v = [v1'; v2'; v3'; v4'];

% Need at least non‐colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, H);

u1

u2

u3

u4

RectificationViaHomography.m

u_x = H(1,1)*v_x + H(1,2)*v_y + H(1,3);
u_y = H(2,1)*v_x + H(2,2)*v_y + H(2,3);
u_z = H(3,1)*v_x + H(3,2)*v_y + H(3,3);

u_x = u_x./u_z;
u_y = u_y./u_z;

im_warped(:,:,1) = reshape(interp2(im(:,:,1), u_x(:), u_y(:)), [h, w]);
im_warped(:,:,2) = reshape(interp2(im(:,:,2), u_x(:), u_y(:)), [h, w]);
im_warped(:,:,3) = reshape(interp2(im(:,:,3), u_x(:), u_y(:)), [h, w]);

im_warped = uint8(im_warped);

ImageWarping.m
x x

y y

1 1


   
      
      

H

v u

v u

u_x = H(1,1)*v_x + H(1,2)*v_y + H(1,3);
u_y = H(2,1)*v_x + H(2,2)*v_y + H(2,3);

Cf) ImageWarpingEuclidean.m

Fun with Homography

H v1

v2

v3v4

u1

u2

u3

u4

Fun with Homography

u1

u2

u3

u4

Fun with Homography

Fun with Homography

Morphing = Object Averaging

“an average” between two objects
Not an average of two images of objects…
…but an image of the average object!

Morphing = Object Averaging

How do we know what the average object looks like?
– We haven’t a clue!
– But we can often fake something reasonable

Morphing = Warping + Cross Dissolving

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 Q

Averaging Points

What’s the average
of P and Q?

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 QLinear Interpolation

(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

Averaging Points

What’s the average
of P and Q?

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 Q

P + 1.5v
= P + 1.5(Q – P)
= -0.5P + 1.5 Q
(extrapolation)

Averaging Points

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 Q

P + 1.5v
= P + 1.5(Q – P)
= -0.5P + 1.5 Q
(extrapolation)

Averaging Points

• P and Q can be anything:
– points on a plane (2D) or in space (3D)
– Colors in RGB or HSV (3D)
– Whole images (m-by-n D)… etc.

Averaging Images: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

Averaging Images: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

t = 0.5 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects

t = 0.3 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects

t = 0.7 t = 1t = 0

Image1 Image2

(1-t)*Image1 t*Image2 Imagehalfway

+ =

+ =

Averaging Images
Averaging Images = Rotating Objects

Image1 Image2

+ = ?

Averaging Images

Image1 Image2

+ =

?

Averaging Images

Image1 Image2

+ =

Averaging Images

Averaging Images != Rotating Complex Objects

=+ +

Averaging Images

Averaging ‘Eigen’ Images = Rotating Objects

Cat-Baby Averaging

Object Averaging with feature matching!
Nose to nose, eye to eye, mouth to mouth, etc.

This is a non-parametric warp

Cat-Baby Averaging

Object Averaging with feature matching (warping)!
– Nose to nose, eye to eye, mouth to mouth, etc.

– This is a non-parametric warp

Warping, then cross-dissolve

Morphing procedure:

1. Find the average shape
2. Non-parametric warping
3. Find the average color

– Cross-dissolve the warped images

Image warping – non-parametric

Image warping idea 1: dense flow

Displacement vector (u,v) for each pixel.

Great details… but too much work, let’s simply it to mesh grid

Define and manipulate the mesh grid

warp the mesh grid

Image warping idea 2 : dense grid

Grid deformation generates expression change

Image warping idea 2 : dense grid

Still too much work…
simplify it to sparse control points and triangles

warp the mesh grid

Image warping idea 2 : dense grid

Specify sparse points and their correspondence

Image warping idea 3 : sparse points

• Define a triangular mesh over the feature points

• Triangle-to-triangle correspondences

• Warp each triangle separately from source to destination

Image warping idea 3 : sparse points

• Warping on triangulation corresponds to warping on dense grid,
and dense pixel flow

From sparse points to dense grid

Delaunay Triangulation

• Draw the dual to the Voronoi diagram
by connecting each two neighboring
sites in the Voronoi diagram.

• The DT may be constructed in
O(nlogn) time.

• This is what Matlab’s delaunay
function uses.

What is good feature points

• The triangulation is consistent with image boundary
– Texture regions won’t fade into the background when morphing

• Maintain the relationship between parts

Good Bad

Triangulations

• A triangulation of set of points in the plane is a
partition of the convex hull to triangles whose vertices
are the points, and do not contain other points.

• There are an exponential number of triangulations of
a point set.

An O(n3) Triangulation Algorithm

• Repeat until impossible:
– Select two sites.

– If the edge connecting them does not intersect previous
edges, keep it.

“Quality” Triangulations

• Let (T) = (1, 2 ,.., 3t) be the vector of angles in
the triangulation T in increasing order.

• A triangulation T1 will be “better” than T2 if (T1) >
(T2) lexicographically.

• The Delaunay triangulation is the “best”
– Maximizes smallest angles

good bad

Boris Nikolaevich Delaunay (March 15, 1890 – July 17, 1980)

Delaunay
bad

http://higeom.math.msu.su/history/delone_r.html

Improving a Triangulation
• In any convex quadrangle, an edge flip is possible. If

this flip improves the triangulation locally, it also
improves the global triangulation.

If an edge flip improves the triangulation, the first edge
is called illegal.

Illegal Edges
• Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by

the other three vertices.
• Proof: By Thales’ theorem.

Theorem: A Delaunay triangulation does not contain illegal edges.
Corollary: A triangle is Delaunay iff the circle through its vertices is

empty of other sites.
Corollary: The Delaunay triangulation is not unique if more than

three sites are co-circular.

p

q

Naïve Delaunay Algorithm

• Start with an arbitrary triangulation. Flip any illegal edge until no more exist.

• Could take a long time to terminate.

Delaunay Triangulation by Duality

• General position assumption: There are no
four co-circular points.

• Draw the dual to the Voronoi diagram by
connecting each two neighboring sites in the
Voronoi diagram.

• Corollary: The DT may be constructed in
O(nlogn) time.

• This is what Matlab’s delaunay function
uses.

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points
– Same mesh in both images!

– Now we have triangle-to-triangle correspondences

Warp interpolation
• How do we create an intermediate warp at time t?

– Assume t = [0,1]

– Simple linear interpolation of each feature pair

– (1-t)*p0+t*p1 for corresponding features p0 and p1

• For each time t, define the intermediate shape
– 𝑝௧ ൌ 1 െ 𝑡 ൈ 𝑝ଵ ൅ 𝑡 ൈ 𝑝ଶ
– triangulation doesn’t change

• Warp both image to the intermediate shape
• Dissolve image = (1-t)ൈimage1 + tൈImage2

Cross
Dissolve

Image warping

Average shape

+

Morphing = Warping + Cross-dissolve

Morphing Sequence

t=0

warped
image 1

warped
image 2

morph
result

t=0.3 t=0.5 t=0.7 t=1

An Example

Morphing

t = 0.3 t = 1t = 0

A௦

B௦

C௦

A்

B்

C்

Step 1: Triangle interpolation

t = 0.3 t = 1t = 0

A௦

B௦

C௦

A்

B்

C்

A

B

C1t S Tt t A = A A()

1t S Tt t B = B B()
1t S Tt t C = C C()

Step 2: Warping
A௦

B௦

C௦

A்

B்

C்

A

B

C

Step 2: Warping
A௦

B௦

C௦

A்

B்

C்

Image warping: from source triangle to the mean triangle
A

B

C

Triangle warping = Affine transform

SB

SA

C

B

A

x tx

Affine transform is a pixel transportation
It is controlled by the movement of the three vertices of the triangle

C௦

x tx

SB

SA

C

B

A

x tx

C௦

Barycentric Coordinates

Each point has an invariant representation with respect to
the three vertices.

x

C

B

A

SB

SA

x tx

S S S   x = A B C

1    

t
t t t   x = A B C

C௦

Barycentric Coordinates

   x = A B C 1    

B

A

x

 B - A)(

 C A()

    x = A B A C A() ()

1       x = A B C()

C௦

Barycentric Coordinates

1    

SB

SA

x

11 1 1

x x x

y y y

x
y





     
          
         

A B C

A B C

 B - A)(

 C A()

    x = A B A C A() ()

linear equations in 3 unknowns

C௦

Barycentric Coordinates

x
11 1 1

x x x

y y y

x
y





     
          
         

A B C

A B C

 B - A)(

 C A()

SB

SA

Barycentric coordinate

Warping with Barycentric Coordinate

A

B

C

𝐗௧ ൌ 𝛼𝐀 ൅ 𝛽𝐁 ൅ 𝛾𝐂

A௦

B௦

C௦
tx x

𝐗 ൌ 𝛼𝐀ௌ ൅ 𝛽𝐁ௌ ൅ 𝛾𝑪ௌ

A௦

B௦

C௦
x


11 1 1

x x x

y y y

x
y





     
          
         

A B C

A B C

Warping with Barycentric Coordinate
X coordinate

Y coordinate

A

B

C



𝐱௧ ൌ 𝛼𝐀 ൅ 𝛽𝐁 ൅ 𝛾𝐂

A௦

B௦

C௦

A௦

B௦

C௦
x

X coordinate

Y coordinate

A

B

Ctx

Warping with Barycentric Coordinate

Grids before and after warping

\

A௦

B௦

C௦
x

A

B

Ctx \

Step 3: Average warped image
A௦

B௦

C௦
x

A

B

Ctx

Warping and Cross Dissolve

Inverse warping from the source image

t = 0.3 t = 1t = 0

A௦

B௦

C௦

A்

B்

C்

A

B

C

Inverse warping from target image

t = 0.3 t = 1t = 0

A௦

B௦

C௦

A்

B்

C்

A

B

C

Step 3: averaging warped image

t = 0.3 t = 1t = 0 A

B

C

A

B

C

Warping, then cross-dissolve

Morphing procedure:
for every t,
1. Find the average shape
2. Non-parametric warping
3. Find the average color

– Cross-dissolve the warped
images

