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* Are you getting the whole picture?
e Compact Camera FOV = 50 x 35°
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Introduction

e Are you getting the whole picture?
o Compact Camera FOV = 50 x 35°
e Human FOV =200 x 135°
e Panoramic Mosaic = 360 x 180°
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Homography Computation
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Homography Computation
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Linear System for Homography Matrix
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How Many Correspondences?

{ux u, 1 A UV, UV, -vx}
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What is minimum m?
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[u,d,v] = svd(A);
X = v(;,end)/v(end,end);
H = reshape(X,3,3)’;



Fun with Homography

The image can be rectified as if it is seen from top view.



Fun with Homography

RectificationViaHomography.m
u=[ul’;u2; u3'; ud'];
v =[vl'v2'; v3" v4'];

% Need at least non-colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, inv(H));



Fun with Homography

RectificationViaHomography.m
u=[ul’;u2; u3'; ud'];
v =[vl'v2'; v3" v4'];

% Need at least non-colinear four points
H = ComputeHomography(v, u);

im_warped = ImageWarping(im, inv(H));

ImageWarping.m

u_x=H(1,1)*v_x+H(1,2)*v_y + H(1,3); Vi Uy
U_y=H(2,1)*v_x+H(2,2)*v_y +H(2,3); | «——A|V, |=H7| 1,
u_z=H(3,1)*v_x+ H(3,2)*v_y + H(3,3); 1 1

U x=u_x/u_z;

uy=u.y./u z
Cf) Imagewarpnguc"dean-m im_warped(:,:,1) = reshape(interp2(im(:,:,1), u_x(:), u_y(:)), [h, w]);
U_x = H(1,1)*v_x + H(1,2)*v_y + H(1,3); im_warped(:,:,2) = reshape(interp2(im(:,:,2), u_x(:), u_y(:)), [h, w]);
Uy = H(2,1)*v_x + H(2,2)*v_y + H(2,3); im_warped(:,:,3) = reshape(interp2(im(:,:,3), u_x(:), u_y(:)), [h, w]);

im_warped = uint8(im_warped);



Fun with Homography
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Feature Matching






Local Patch




Local Patch (Orientation)




| Loca_l Patch (Scale)




U V

Desired properties:
» Repeatability: the same point is repeatedly detected.
 Discriminativity: the point is unique.




Local Visual Descriptor
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Desired properties:

» Repeatability: the same point is repeatedly detected.
 Discriminativity: the point is unique.

 Orientation aware




Image Features

slides from
A. Efros, Steve Seitz and Rick Szeliski



Today’s lecture

¢ Feature detectors
e scale invariant Harris corners

e [Feature descriptors
e patches, oriented patches

 Reading :
. Multi-image Matching using Multi-scale image patches, CVPR 2005



More motivation...

e Feature points are used for:
 |mage alignment (homography, fundamental matrix)
o 3D reconstruction
 Motion tracking
e Object recognition
e [ndexing and database retrieval
 Robot navigation
e ... Other



Harris corner detector

e C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

—




The Basic Idea

 \We should easily recognize the point by looking through
a small window

e Shifting a window in any direction should give a large
change in intensity

T\\




Harris Detector: Basic Idea
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“flat” region: “edge”: “corner”:
no change in no change along significant change

all directions the edge direction In all directions



Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

E(u,v)= Zw(x, V) [I(x+u,y+v)—1(x, y)]2

.

1 in window, 0 outside Gaussian



e Sum of squared differences

Err(u,v)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Low texture regi()n Sum of squared differences

Err(x,y)
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



ngh teXtured regi()n Sum of squared differences

Err(x,y)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



We can treat I(x+u,y+v) as image moved slightly.
The change in intensity can be predicted:

I(x)




intensity change in 1D: [(I _|_ u) — [(Qj) — U X Iﬂj

intensity change in 2D:

I(z4+u,y+v)—I(z,y) =uxI,+vxI,

= [, v] - [La; 1y

Spatial derivative



Harris Detector: Mathematics

For small shifts [U , V] we have a bilinear approximation:

where M is a 2x2 matrix computed from image derivatives:

I 1, I 1 Iy



ngh teXtured regi()n Sum of squared differences

Err(x,y)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Harris Detector: Mathematics

Classification of image A
points using eigenvalues
of M:




Harris Detector: Mathematics

Measure of corner response:

P det M
Trace M

detM = A4,
trace M = A + A,



Harris Detector

e The Algorithm:
 Find points with large corner response function R (R > threshold)
* Take the points of local maxima of R



Harris Detector: Workflow




Harris Detector: Workflow

Compute corner response R




Harris Detector: Workflow

Find points with large corner response: R>threshold




Harris Detector: Workflow

Take only the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Some Properties

e Rotation invariance

™ \Hj> d
57 T

Ellipse rotates but its shape (i.e. eigenvalues) remains the
same

Corner response R is invariant to image rotation




Harris Detector: Some Properties

e Partial invariance to affine intensity change

v Only derivatives are used => invariance
to intensity shiftl > 1 + Db

v Intensity scale: | — a |
AN

threshold / J w \ \/V \

x (image coordinate) x (image coordinate)



Harris Detector: Some Properties

e But: non-invariant to /image scale!

AT ) B

All points will be Corner !
classified as edges



Scale Invariant Detection

 (Consider regions (e.q. circles) of different sizes around a point
 Regions of corresponding sizes will look the same in both images

=




Scale Invariant Detection

 The problem: how do we choose corresponding circles /independently in each
image?

» (hoose the scale of the “best” corner




Feature selection

e Distribute points evenly over the image




Adaptive Non-maximal Suppression

 Desired: Fixed # of features per image
« Want evenly distributed spatially. ..

« Search over non-maximal suppression radius i - = .
[Brown, Szeliski, Winder, CVPR’05] (a) Strongest 250 (b) Strongest 500

(c) ANMS 250, r = 24 (d)y ANMS 500, r = 16



Feature descriptors

 \We know how to detect points
 Next question: How to match them?

Point descriptor should be:
1. Invariant

2.

Distinctive




Descriptors Invariant to Rotation

e Find local orientation

Dominant direction of gradient

o Extract image patches relative to this orientation




Multi-Scale Oriented Patches

e |nterest points
e Multi-scale Harris corners
e QOrientation from blurred gradient
» Geometrically invariant to rotation

e Descriptor vector
e Bias/gain normalized sampling of local patch (8x8)
 Photometrically invariant to affine changes in intensity

* [Brown, Szeliski, Winder, CVPR'2005]



Descriptor Vector

e Orientation = blurred gradient

e Rotation Invariant Frame
e Scale-space position (x, Y, S) + orientation (6)




Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.



Local Scale Invariant Feature Transform (SIFT)

SIFT automatically finds the optimal scale of feature point and its orientation.

Desired properties:

» Repeatability: the same point is repeatedly detected.
 Discriminativity: the point is unique.

 QOrientation aware
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Local Scale Invariant Feature Transform (SIFT)

descriptor descriptor2



Local Scale Invariant Feature Transform (SIFT)

&

b

Féatur match candidates

descriptor descriptor2



Nearest Neighbor Search

Feature match candidates

descriptor descriptor2



Nearest Neighbor Search

e . , , Feature match candidates
Discriminativity: how is the feature point unique?



Nearest Neighbor Search w/ Ratio Test

d2 : second closest distance

d
5 d3 d4

/011 - closest distance

Feature match candidates

Discriminativity: how is the feature point unique?

ﬁ<O.7

2



Nearest Neighbor Search w/o Ratio Test

Left image—>right image



Nearest Neighbor Search w/ Ratio Test

-

Left image—>right image



Nearest Neighbor Search w/o Ratio Test

e
-

Left image <-right image



Nearest Neighbor Search w/ Ratio Test

Left image <right image



Bi-directional Consistency Check

e,

_ Feature match candidates
Consistency: would a feature match correspond to each other?



Bi-directional Consistency Check
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RANSAC: Random Sample Consensus:
Linear Least Squares A X

— e e R U S T R— e Wil — g b e




Martin A. Fischler and Robert C. Bolles (June 1981).

""Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and
Automated Cartography"'.




Recall: Line Fitting (Ax=b)

12
Data
— Ground truth
101 | east squares | A

2x9




Outlier
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£ =lex, +f,+g|

Perpendicular distance

Quadratic magnification of error of outliers

Line fitting error:

Ez(exw—zj/w-g)2+---

:Z(@X, %, -g)

\ >
® Qutlier

+(ex, -1y —g)2



£ =lex, +f,+g|
o Perpendicular distance
X+ +5=0 Outlier rejection strategy:
To find the best line that explanes the maximum number
of points.
\ >
® Qutlier




£ =lex, +f,+g|

Perpendicular distance
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ex+f+5=0 Outlier rejection strategy:

To find the best line that explanes the maximum number
of points.

- >
* Outlier Assumptions:

1. Majority of good samples agree with the underlying
model (good apples are same and simple.).

2. Bad samples does not consistently agree with a single
model
(all bad apples are different and complicated.).



RANSAC: Random Sample Consensus



1. Random sampling

RANSAC: Random Sample Consensus



’ ° o 1. Random sampling
’ o . 2. Model building
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RANSAC: Random Sample Consensus



° o 1. Random sampling
2. Model building

® e/ . 3. Thresholding

RANSAC: Random Sample Consensus



° o 1. Random sampling
2. Model building
cle 3. Thresholding

¢« o o 4. Inlier counting

# of inliers: 7

RANSAC: Random Sample Consensus
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RANSAC: Random Sample Consensus



° o 1. Random sampling
. 2. Model building
-. 3. Thresholding

‘. . 4. Inlier counting

RANSAC: Random Sample Consensus



° o 1. Random sampling
2. Model building
o. 3. Thresholding

e e 4. Inlier counting

RANSAC: Random Sample Consensus



° o 1. Random sampling
2. Model building
o. 3. Thresholding

Ao oo e 4. Inlier counting

# of inliers: 10

RANSAC: Random Sample Consensus
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RANSAC: Random Sample Consensus



1. Random sampling
2. Model building
‘. 3. Thresholding

..- . 4. Inlier counting

RANSAC: Random Sample Consensus



1. Random sampling
e 2. Model building
3. Thresholding

.-' . 4. Inlier counting

RANSAC: Random Sample Consensus



1. Random sampling
e 2. Model building
’. 3. Thresholding

. e et e 4. Inlier counting

# of inliers: 23
Maximum number of inliers

RANSAC: Random Sample Consensus



Required number of iterations with psuccess rate:



' Required number of iterations with p success rate:

Probability of choosing an inlier: W = #ofnliers
# of samples




- Required number of iterations with p success rate:

#of inlier
Probability of choosing an inlier: W = Oriniers
# of samples

Probability of building a correct model: w" where n is the number of samples to build a model.



.'. Required number of iterations with p success rate:
>
. . #ofinliers
Probability of choosing an inlier: W =

~ #of samples

Probability of building a correct model: w" where n is the number of samples to build a model.

K
Probability of not building a correct model during k iterations: (1 - W”)



.'. Required number of iterations with psuccess rate:
>
. #ofinliers
Probability of choosing an inlier: W =
# of samples

Probability of building a correct model: w" where n is the number of samples to build a model.

K
Probability of not building a correct model during k iterations: (1 - W”) | ( : )
OgLI-p

_Iog(W—W”)

K
(1 - W”) =1-p where pis desired RANSAC success rate. K



0.. Required number of iterations with p success rate:
" log(1- #ofinliers
. og (1-w") # of samples
>
#ofinlier
Probability of choosing an inlier: W= OF ITeTS

~ #of samples

Probability of building a correct model: w" where n is the number of samples to build a model.

K
Probability of not building a correct model during k iterations: (1 - W”) | ( : )
OgLI-p

_Iog(W—W”)

K
(1 - W”) =1-p where pis desired RANSAC success rate. K
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Homography computation



vV, U

vV, U,
X > —>H —>
vV, o u,

\V , < u 4
Homography computation

Inlier evaluation



—R
Pure rotation V= Hu



If the correspondence is bad, the computed homography will fit the four points
still perfectly, but how do we know it is wrong?



If the correspondence is bad, it has no prediction power!









# of inliers: 16 out of 1865



# of inliers: 16 out of 1865




# of inliers: 36 out of 1865



# of inliers: 36 out of 1865




# of inliers: 57 out of 1865



# of inliers: 57 out of 1865




# of inliers: 216 out of 1865



# of inliers: 216 out of 1865







Homography



Image Panorama (Cylindrical Projection)

First camera:
Point on cylindrical surface: [h, 0]
«— Pointin 3D space: [fcos(0), h, fsin(8)]
«— Point in image coordinate: K[fcos(8), h, fsin(6)]"




Image Panorama (Cylindrical Projection)




Image Panorama (Cylindrical Projection)

Second camera:
Point on cylindrical surface: [h, 0]

«— Pointin 3D space: [fcos(0), h, fsin(8)]

« Point in image coordinate: KR[fcos(8), h, fsin(0)]*
where R is given by R = K~tHK




Image Panorama (Cylindrical Projection

e e m — ———— - -




Image Panorama (Cylindrical Projection
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