Improving Learning in Neural Networks

CIS 680
Convolutional Networks

Notation:
- □ - convolutional layer output
- ‖ - fully connected layer output
- | - max pooling layer
- — - sigmoid function f
- - softmax function

Forward Pass:

$x \xrightarrow{g^{(1)}} z^{(1)} \xrightarrow{a^{(1)}} z^{(2)} \xrightarrow{a^{(2)}} z^{(3)} \xrightarrow{a^{(3)}} z^{(4)} \hat{y}$

A Penguin
Convolutional Networks

Notation:

- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function \(f \)
- softmax function

Forward Pass:

1. \(a^{(1)} = \text{pool}(f(g^{(1)} \ast x)) \)

A Penguin
Convolutional Networks

Notation:
- convolotional layer output
- max pooling layer
- fully connected layer output
- sigmoid function f
- softmax function

Forward Pass:

1. $a^{(1)} = \text{pool}(f(g^{(1)} \ast x))$
2. $a^{(2)} = \text{pool}(f(g^{(2)} \ast a^{(1)}))$
Convolutional Networks

Notation:
- □ - convolutional layer output
- □ - fully connected layer output
- | - max pooling layer
- | - sigmoid function f
- | - softmax function

Forward Pass:

\mathbf{x} $g^{(1)}$ \rightarrow $z^{(1)}$ \rightarrow $a^{(1)}$ $g^{(2)}$ \rightarrow $z^{(2)}$ \rightarrow $a^{(2)}$ $W^{(1)}$ $W^{(2)}$ \rightarrow \hat{y}

1. $a^{(1)} = pool(f(g^{(1)} \ast x))$
2. $a^{(2)} = pool(f(g^{(2)} \ast a^{(1)}))$
3. $a^{(3)} = f(W^{(1)}a^{(2)})$

A Penguin
Convolutional Networks

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function f
- softmax function

Forward Pass:

1. $a^{(1)} = \text{pool}(f(g^{(1)} \ast x))$
2. $a^{(2)} = \text{pool}(f(g^{(2)} \ast a^{(1)}))$
3. $a^{(3)} = f(W^{(1)} a^{(2)})$
4. $\hat{y} = \text{softmax}(W^{(2)} a^{(3)})$
Convolutional Networks

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function f
- softmax function

Forward Pass:

Predicted probabilities, which class this image belongs to
Convolutional Networks

Notation:
- □ - convolutional layer output
- □ - fully connected layer output
- || - max pooling layer
- - sigmoid function f
- - softmax function

Forward Pass:

\mathbf{x} \rightarrow $\mathbf{z}^{(1)}$ \rightarrow $\mathbf{a}^{(1)}$ \rightarrow $\mathbf{z}^{(2)}$ \rightarrow $\mathbf{a}^{(2)}$ \rightarrow $\mathbf{z}^{(3)}$ \rightarrow $\mathbf{a}^{(3)}$ \rightarrow $\mathbf{z}^{(4)}$ \hat{y}

A Penguin

How to learn the parameters from the data?
1. Compute the gradients of the overall loss and propagate it back:

\[\frac{\partial L}{\partial z^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{(4)}} \]
2. Compute the gradients to adjust the weights:

\[
\frac{\partial L}{\partial W^{(2)}} = \frac{\partial L}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial W^{(2)}} \quad \text{where} \quad z^{(4)} = W^{(2)}a^{(3)}
\]
3. Backpropagate the gradients to previous layers:
\[
\frac{\partial L}{\partial z^{(3)}} = \frac{\partial L}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial f(z^{(3)})} \frac{\partial f(z^{(3)})}{\partial z^{(3)}}
\]
where \(z^{(4)} = W^{(2)} a^{(3)} \)
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]

The weight that is used in conjunction with the activation unit of interest.

The output.
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[
W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)}
\]
Backpropagation

Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

$$W^{(l)} \ f(z^{(l)}) \ z^{(l+1)}$$
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) z^{(l+1)} \]

Backward:

\[\frac{\partial L}{\partial z^{(l+1)}} \]
Fully Connected Layers:

Forward:

\[W^{(l)} \cdot f(z^{(l)}) = z^{(l+1)} \]

Backward:

A measure how much an activation unit contributed to the loss

\[\frac{\partial L}{\partial z^{(l+1)}} = \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]

Backward:

A measure how much an activation unit contributed to the loss

\[(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

\[W^{(l)} \ f(z^{(l)}) = z^{(l+1)} \]

Backward:

\[(W^{(l)})^T \ \frac{\partial L}{\partial z^{(l+1)}} = \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]

Backward:

\[(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial L}{\partial f(z^{(l)})} = \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]

Backward:

\[(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} = \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]

Backward:

\[(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} = \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

\[W^{(l)} f(z^{(l)}) = z^{(l+1)} \]

Backward:

\[(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial L}{\partial f(z^{(l)})} \]
Fully Connected Layers:

Forward:

$$W^{(l)} f(z^{(l)}) = z^{(l+1)}$$

Backward:

$$\left(W^{(l)}\right)^T \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial L}{\partial f(z^{(l)})}$$
4. Compute the gradients to adjust the weights:

\[
\frac{\partial L}{\partial W^{(1)}} = \frac{\partial L}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial W^{(1)}} \quad \text{where} \quad z^{(3)} = W^{(1)} a^{(2)}
\]
5. Backpropagate the gradients to previous layers:

\[
\frac{\partial L}{\partial z^{(2)}} = \frac{\partial L}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial f(z^{(2)})} \frac{\partial f(z^{(2)})}{\partial z^{(2)}}
\]

where \(z^{(3)} = W^{(1)} a^{(2)} \)
6. Compute the gradients to adjust the weights:

\[
\frac{\partial L}{\partial g^{(2)}} = \frac{\partial L}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial g^{(2)}} \quad \text{where} \quad z^{(2)} = g^{(2)} \ast a^{(1)}
\]
7. Backpropagate the gradients to previous layers:

\[
\frac{\partial L}{\partial z^{(1)}} = \frac{\partial L}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial f(z^{(1)})} \frac{\partial f(z^{(1)})}{\partial z^{(1)}}
\]

where \(z^{(2)} = g^{(2)} \ast a^{(1)} \)
Convolutional Layers:

Forward:

\[a^{(l)} \otimes g^{(l)} = z^{(l+1)} \]
Convolutional Layers:

Forward:

\[a^{(l)} \otimes g^{(l)} = z^{(l+1)} \]

Backward:

A measure how much an activation unit contributed to the loss

\[\frac{\partial L}{\partial z^{(l+1)}} \]

\[\frac{\partial L}{\partial f(z^{(l)})} \]
Convolutional Layers:

Forward:

\[
 a^{(l)} \otimes g^{(l)} = z^{(l+1)}
\]

Backward:

\[
 \sum \left(g^{(l)} \odot \frac{\partial L}{\partial z^{(l+1)}} \right) = \frac{\partial L}{\partial f(z^{(l)})}
\]
8. Compute the gradients to adjust the weights:
\[
\frac{\partial L}{\partial g^{(1)}} = \frac{\partial L}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial g^{(1)}} \quad \text{where} \quad z^{(1)} = g^{(1)} \ast x
\]
Neural Network Learning

Google Deepmind DQN playing
Atari Breakout

Setup:
NVIDIA GTX 690
i7-3770K - 16 GB RAM
Ubuntu 16.04 LTS
Google Deepmind DQN
Neural Network Learning

How do we better understanding various properties behind the learning process in neural nets?
How to Improve NN Learning?

Loss / Cost function:
- Loss function defines what we want the neural network to learn.
How to Improve NN Learning?

Loss / Cost function:
- Loss function defines what we want the neural network to learn.

How do we select a good loss function?
How to Improve NN Learning?

Loss / Cost function:

- Loss function defines what we want the neural network to learn.

- Humans learn best when they get feedback after being very wrong (e.g. a person learns to avoid scams after the first time he/she was scammed).
How to Improve NN Learning?

Loss / Cost function:

- Loss function defines what we want the neural network to learn.

- Humans learn best when they get feedback after being very wrong (e.g. a person learns to avoid scams after the first time he/she was scammed).

- Does the same learning trend apply to neural networks? If not we want to design a loss function with such learning characteristics.
How to Improve NN Learning?

Loss / Cost function:
- Consider a neural network consisting of a single hidden neuron:

```
Input: 1.0 → Output: 0.09
```

\[w = -1.28 \]

\[b = -0.98 \]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Neural Network Diagram](image)

 - Input: 1.0
 - Output: 0.09
 - $w = -1.28$
 - $b = -0.98$

- First, let’s examine a commonly used L2 loss objective:

$$L = \frac{1}{2}(\sigma(z) - y)^2$$
How to Improve NN Learning?

Loss / Cost function:
- Consider a neural network consisting of a single hidden neuron:

 ![Diagram](image)

 - Input: 1.0
 - $w = -1.28$
 - $b = -0.98$
 - Output: 0.09

- First, let’s examine a commonly used L2 loss objective:

 $$L = \frac{1}{2}(\sigma(z) - y)^2$$

 - NN prediction
 - ground truth
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Diagram of a neural network with input 1.0, weight w = -1.28, bias b = -0.98, and output 0.09.]

- First, let’s examine a commonly used L2 loss objective:

 $$L = \frac{1}{2}(\sigma(z) - y)^2$$
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Diagram of a neural network with an input of 1.0, weight w = -1.28, bias b = -0.98, and output 0.09.]

- First, let’s examine a commonly used L2 loss objective:

 \[L = \frac{1}{2}(\sigma(z) - y)^2 \]

 Why is the learning slow initially?
How to Improve NN Learning?

Loss / Cost function:
• Consider a neural network consisting of a single hidden neuron:

\[L = \frac{1}{2} (\sigma(z) - y)^2 \]

\[\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x \]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

\[L = \frac{1}{2} (\sigma(z) - y)^2 \]

\[\frac{\partial L}{\partial w} = (\sigma(z) - y) \sigma'(z)x \]

- First, let’s examine a commonly used L2 loss objective:

\[\sigma(z) \]

derivatives are very small
How to Improve NN Learning?

Loss / Cost function:
- Consider a neural network consisting of a single hidden neuron:

 ![Diagram](image)

 - Input: 1.0
 - Output: 0.09
 - $w = -1.28$
 - $b = -0.98$

- First, let’s examine a commonly used L2 loss objective:

 $$ L = \frac{1}{2}(\sigma(z) - y)^2 $$

 $$ \frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x $$

 the so called vanishing gradient problem!
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Neural Network Diagram](image)

 Input: 1.0 \[\rightarrow \] Output: 0.09

 \[w = -1.28\]

 \[b = -0.98\]

- First, let’s examine a commonly used L2 loss objective:

 \[L = \frac{1}{2}(\sigma(z) - y)^2\]

 \[\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x\]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Diagram]

 Input: 1.0 → Output: 0.09
 \[w = -1.28 \] \[b = -0.98 \]

- First, let’s examine a commonly used L2 loss objective:

 \[
 L = \frac{1}{2} (\sigma(z) - y)^2
 \]

 \[
 \frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x
 \]

 We need a learning objective that wouldn’t have a sigmoid derivative in the gradient.
How to Improve NN Learning?

Loss / Cost function:
• Consider a neural network consisting of a single hidden neuron:

Input: 1.0 → \[w = -1.28 \] → Output: 0.09

• First, let’s examine a commonly used L2 loss objective:

\[
L = \frac{1}{2} (\sigma(z) - y)^2
\]

We want the following gradient:

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x
\] →

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)x
\]
How to Improve NN Learning?

Loss / Cost function:
- Consider a neural network consisting of a single hidden neuron:

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)x \\
\text{Let } \ a = \sigma(z)
\]
How to Improve NN Learning?

Loss / Cost function:
• Consider a neural network consisting of a single hidden neuron:

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)x \\
\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w}
\]

Let \(a = \sigma(z) \)

where \(\frac{\partial a}{\partial z} = a(1 - a) \) & \(\frac{\partial z}{\partial w} = x \)
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)x \quad \text{Let} \quad a = \sigma(z)
\]

\[
\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w}
\]

where \(\frac{\partial a}{\partial z} = a(1 - a) \) \& \(\frac{\partial z}{\partial w} = x \)

\[
(a - y)x = \frac{\partial L}{\partial a} a(1 - a)x
\]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

\[\frac{\partial L}{\partial w} = (\sigma(z) - y)x \]

Let \(a = \sigma(z) \)

\[\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w} \]

where \(\frac{\partial a}{\partial z} = a(1 - a) \) & \(\frac{\partial z}{\partial w} = x \)

\[(a - y)x = \frac{\partial L}{\partial a} a(1 - a)x \]

\[\frac{\partial L}{\partial a} = \frac{(a - y)}{a(1 - a)} \]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

\[
\begin{align*}
\frac{\partial L}{\partial w} &= (\sigma(z) - y)x \\
\frac{\partial L}{\partial w} &= \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w}
\end{align*}
\]

Let \(a = \sigma(z) \)

where \(\frac{\partial a}{\partial z} = a(1 - a) \) \& \(\frac{\partial z}{\partial w} = x \)

\[
(a - y)x = \frac{\partial L}{\partial a}a(1 - a)x \quad \Rightarrow \quad \frac{\partial L}{\partial a} = \frac{(a - y)}{a(1 - a)}
\]

\[
L = -(y \log a + (1 - y) \log (1 - a))
\]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

\[
\frac{\partial L}{\partial w} = (\sigma(z) - y)x \quad \text{Let} \quad a = \sigma(z)
\]

\[
\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w} \quad \text{where} \quad \frac{\partial a}{\partial z} = a(1 - a) \quad \& \quad \frac{\partial z}{\partial w} = x
\]

\[
(a - y)x = \frac{\partial L}{\partial a} a(1 - a)x \quad \Rightarrow \quad \frac{\partial L}{\partial a} = \frac{(a - y)}{a(1 - a)}
\]

\[
L = -(y \log a + (1 - y) \log (1 - a))
\]

We just derived a cross-entropy loss function!
How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden neuron:

![Diagram of a single hidden neuron with input 1.0, weight w = -1.28, bias b = -0.98, and output 0.09.]

• Now let’s examine a cross-entropy loss objective:

\[L = -(y \log a + (1 - y) \log (1 - a)) \]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Neural Network Diagram](image)

 - Input: 1.0
 - Output: 0.09
 - \(w = -1.28 \)
 - \(b = -0.98 \)

- Now let’s examine a cross-entropy loss objective:

 \[
 L = - (y \log a + (1 - y) \log (1 - a))
 \]
How to Improve NN Learning?

Loss / Cost function:

- Consider a neural network consisting of a single hidden neuron:

 ![Diagram of a neural network with an input of 1.0 and an output of 0.09, with weights w = -1.28 and b = -0.98.]

- Now let’s examine a cross-entropy loss objective:

 \[L = -(y \log a + (1 - y) \log (1 - a)) \]

 The learning is much faster initially now.
How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden neuron:

• Now let’s examine a cross-entropy loss objective:

\[
L = -(y \log a + (1 - y) \log (1 - a))
\]

\[
\frac{\partial L}{\partial w} = x(a - y)
\]

no sigmoid derivatives in the gradient equation
How to Improve NN Learning?

Loss / Cost function:
- How about the softmax loss function?

\[
L = - \sum_{i=1}^{K} y_i \log (\hat{y}_i) \quad \text{where} \quad \hat{y}_i = \frac{\exp (z_i^{(4)})}{\sum_{j=1}^{K} \exp (z_j^{(4)})}
\]
How to Improve NN Learning?

Loss / Cost function:
• How about the softmax loss function?

\[L = - \sum_{i=1}^{K} y_i \log(\hat{y}_i) \quad \text{where} \quad \hat{y}_i = \frac{\exp(z_i^{(4)})}{\sum_{j=1}^{K} \exp(z_j^{(4)})} \]

\[\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} \]
How to Improve NN Learning?

Loss / Cost function:

- How about the softmax loss function?

\[
L = - \sum_{i=1}^{K} y_i \log (\hat{y}_i) \quad \text{where} \quad \hat{y}_i = \frac{\exp (z_i^{(4)})}{\sum_{j=1}^{K} \exp (z_j^{(4)})}
\]

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}}
\]

\[
\frac{\partial L}{\partial \hat{y}_i} = - \frac{y_i}{\hat{y}_i}
\]
How to Improve NN Learning?

Loss / Cost function:
- How about the softmax loss function?

\[
L = - \sum_{i=1}^{K} y_i \log (\hat{y}_i) \quad \text{where} \quad \hat{y}_i = \frac{\exp (z_i^{(4)})}{\sum_{j=1}^{K} \exp (z_j^{(4)})}
\]

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}}
\]

\[
\frac{\partial L}{\partial \hat{y}_i} = - \frac{y_i}{\hat{y}_i}
\]

\[
\frac{\partial \hat{y}_i}{\partial z_j^{(4)}} = \begin{cases}
\hat{y}_i (1 - \hat{y}_i), & \text{if } i = j \\
-\hat{y}_i \hat{y}_j, & \text{if } i \neq j
\end{cases}
\]
How to Improve NN Learning?

Loss / Cost function:

- How about the softmax loss function?

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}},
\]
How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}}
\]
How to Improve NN Learning?

Loss / Cost function:

- How about the softmax loss function?

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}}
\]

\[= \hat{y}_i - y_i\]
How to Improve NN Learning?

Loss / Cost function:

- How about the softmax loss function?

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i\neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}}
\]

\[
= \hat{y}_i - y_i
\]

- No sigmoid derivatives in the gradient!
How to Improve NN Learning?

Loss / Cost function:
- How about the softmax loss function?

\[
\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}}
\]

\[
= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}}
\]

\[
= \hat{y}_i - y_i
\]

- No sigmoid derivatives in the gradient!
- Therefore, learning shouldn’t be slowed down.
Vanishing Gradients

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function f
- softmax function

Forward Pass:

$\begin{align*}
x &\rightarrow g^{(1)} \\
g^{(1)} &\rightarrow z^{(1)} \\
z^{(1)} &\rightarrow a^{(1)} \\
a^{(1)} &\rightarrow z^{(2)} \\
z^{(2)} &\rightarrow a^{(2)} \\
a^{(2)} &\rightarrow z^{(3)} \\
z^{(3)} &\rightarrow a^{(3)} \\
z^{(3)} &\rightarrow \hat{y} \\
\end{align*}$

A Penguin

• Did we solve the vanishing gradient problem?
Vanishing Gradients

Notation:

- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function \(f \)
- softmax function

Forward Pass:

\[x \rightarrow g^{(1)} \rightarrow z^{(1)} \rightarrow a^{(1)} \rightarrow z^{(2)} \rightarrow a^{(2)} \rightarrow z^{(3)} \rightarrow a^{(3)} \rightarrow z^{(4)} \rightarrow \hat{y} \]

\(x \) - A Penguin

\(g^{(2)} \rightarrow \sigma(z) \)

\(\sigma(z) \) - sigmoid function

derivatives are very small
Vanishing Gradients

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function f
- softmax function

Forward Pass:

How can we fix this?
Vanishing Gradients

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function f
- softmax function

Forward Pass:

Replace the sigmoid activation function!
Vanishing Gradients

Activation function requirements:

- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.
Vanishing Gradients

Activation function requirements:
• We want the activation function to be non-linear.
• We want the activation function to be differentiable.
• We want an activation function that eliminates the vanishing gradient problem.

Sigmoid Function
\[f(z) = \frac{1}{1 + \exp(-z)} \]

Hyperbolic Tangent
\[f(z) = \tanh(z) \]

RELU
\[f(z) = max(0, z) \]
Vanishing Gradients

Activation function requirements:
- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.

\[
\text{Sigmoid Function} \\
\begin{align*}
f(z) &= \frac{1}{1 + \exp(-z)}
\end{align*}
\]

\[
\text{Hyperbolic Tangent} \\
\begin{align*}
f(z) &= \tanh(z)
\end{align*}
\]

\[
\text{RELU} \\
\begin{align*}
f(z) &= \max(0, z)
\end{align*}
\]
Vanishing Gradients

Activation function requirements:
• We want the activation function to be non-linear.
• We want the activation function to be differentiable.
• We want an activation function that eliminates the vanishing gradient problem.

Sigmoid Function

\[f(z) = \frac{1}{1 + \exp(-z)} \]

Hyperbolic Tangent

\[f(z) = \tanh(z) \]

RELU

\[f(z) = \max(0, z) \]
Vanishing Gradients

Activation function requirements:
• We want the activation function to be non-linear.
• We want the activation function to be differentiable.
• We want an activation function that eliminates the vanishing gradient problem.

Sigmoid Function
\[f(z) = \frac{1}{1 + \exp(-z)} \]

Hyperbolic Tangent
\[f(z) = \tanh(z) \]

RELU
\[f(z) = \max(0, z) \]
Vanishing Gradients

Activation function requirements:

- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.

Sigmoid Function

\[f(z) = \frac{1}{1 + \exp(-z)} \]

Hyperbolic Tangent

\[f(z) = \tanh(z) \]

RELU

\[f(z) = \max(0, z) \]

- Derivatives are small
- Derivatives are small
- Derivative is constant
Vanishing Gradients

Learning Speed:
- The network that uses a RELU activation function learns significantly faster.
Vanishing Gradients

Learning Speed:
• The network that uses a RELU activation function learns significantly faster.

Training is significantly faster when using the RELU function
Vanishing Gradients

Learning Speed:
- The network that uses a RELU activation function learns significantly faster.

Does this mean the problem of vanishing gradients is completely solved?
Vanishing Gradients

Learning Speed:
- It turns out that even using RELU activation function doesn’t completely eliminate the vanishing gradient problem.

- The key question is why the vanishing gradient problem still persists.

- To understand this we need to revisit the original back propagation algorithm.
Backpropagation

1. Let \(\frac{\partial L}{\partial z_i^{(n)}} = \hat{y}_i - y_i \), where \(n \) denotes the number of layers in the network.

2. For each fully connected layer \(l \):

 • For each node \(i \) in layer \(l \) set:
 \[
 \frac{\partial L}{\partial z_i^{(l)}} = (\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \frac{\partial L}{\partial z_j^{(l+1)}}) \frac{\partial f(z_i^{(l)})}{\partial z_i^{(l)}}
 \]

 • Compute partial derivatives:
 \[
 \frac{\partial L}{\partial W_{ij}^{(l)}} = f(z_j^{(l)}) \frac{\partial L}{\partial z_i^{(l+1)}}
 \]

 • Update the parameters:
 \[
 W_{ij}^{(l)} = W_{ij}^{(l)} - \alpha \frac{\partial L}{\partial W_{ij}^{(l)}}
 \]
Vanishing Gradients

\[x \xrightarrow{w_1} a_1 \xrightarrow{w_2} a_2 \xrightarrow{w_3} a_3 \xrightarrow{w_4} a_4 \rightarrow \text{loss function} \]
Vanishing Gradients

\[\frac{\partial L}{\partial w_4} = \frac{\partial L}{\partial a_4} \sigma'(z_4) a_3 \]
Vanishing Gradients

\[
\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \sigma'(z_3)a_2
\]
Vanishing Gradients

\[
\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \sigma'(z_3) a_2
\]

\[
= \frac{\partial L}{\partial a_4} \sigma'(z_4) w_4 \sigma'(z_3) a_2
\]
Vanishing Gradients

\[
\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_2} \sigma'(z_2) a_1
\]
Vanishing Gradients

\[\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_2} \sigma'(z_2) a_1 \]

\[= \frac{\partial L}{\partial a_4} \sigma'(z_4) w_4 \sigma'(z_3) w_3 \sigma'(z_2) a_1 \]
Vanishing Gradients

\[\frac{\partial L}{\partial w_1} \]

The diagram shows a neural network with weights \(w_1, w_2, w_3, w_4 \) and activations \(a_1, a_2, a_3, a_4 \) leading to the loss function \(L \).

\[\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1) x \]
Vanishing Gradients

\[
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1)x
\]

\[
= \frac{\partial L}{\partial a_4} \sigma'(z_4)w_4 \sigma'(z_3)w_3 \sigma'(z_2)w_2 \sigma'(z_1)x
\]
Vanishing Gradients

\[
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1)x
\]

\[
= \frac{\partial L}{\partial a_4} \sigma'(z_4)w_4 \sigma'(z_3)w_3 \sigma'(z_2)w_2 \sigma'(z_1)x
\]

- Weights are typically initialized to small values (e.g. gaussian distribution with 0 mean and 0.01 std dev)
Vanishing Gradients

\[\frac{\partial L}{\partial w_1} \]

\[x \rightarrow a_1 \xrightarrow{w_2} a_2 \xrightarrow{w_3} a_3 \xrightarrow{w_4} a_4 \rightarrow L \]

\[\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1)x \]

\[= \frac{\partial L}{\partial a_4} \sigma'(z_4)w_4\sigma'(z_3)w_3\sigma'(z_2)w_2\sigma'(z_1)x \]

• Exponential decrease in the gradient as we move towards the early hidden layers.
Vanishing Gradients

\[
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1)x
\]

\[
= \frac{\partial L}{\partial a_4} \sigma'(z_4) w_4 \sigma'(z_3) w_3 \sigma'(z_2) w_2 \sigma'(z_1)x
\]

- As a result, the deepest hidden layers learn significantly faster, relative to the early layers that may not learn much at all.
Deep Supervision

- We can reduce the vanishing gradient problem and make learning more effective via deep supervision.
Deep Supervision

- We can reduce the vanishing gradient problem and make learning more effective via deep supervision.

- Deep supervision refers to a concept of adding learning objectives / loss functions to the intermediate hidden layers.
Deep Supervision

• We can reduce the vanishing gradient problem and make learning more effective via deep supervision.

• Deep supervision refers to a concept of adding learning objectives / loss functions to the intermediate hidden layers.

• Backpropagation proceeds as usual, but now the gradients are propagated not from one but from multiple loss layers.
Deep Supervision

Standard CNN:

Notation:
- □ - convolutional layer output
- □ - fully connected layer output
- ▪ - max pooling layer
- - sigmoid function f
- - softmax function

Forward Pass:
$x \rightarrow g^{(1)} \rightarrow z^{(1)} \rightarrow a^{(1)} \rightarrow g^{(2)} \rightarrow z^{(2)} \rightarrow a^{(2)} \rightarrow z^{(3)} \rightarrow a^{(3)} \rightarrow z^{(4)} \hat{y}$

\mathcal{L}

A Penguin
Deep Supervision

Standard CNN:

Notation:
- □ - convolutional layer output
- ![Image](max_pooling_layer.png) - max pooling layer
- ![Image](sigmoid_func.png) - sigmoid function f
- ![Image](softmax_func.png) - softmax function

Forward Pass:

$x \rightarrow g^{(1)} \rightarrow z^{(1)} \rightarrow a^{(1)} \rightarrow g^{(2)} \rightarrow z^{(2)} \rightarrow a^{(2)} \rightarrow z^{(3)} \rightarrow a^{(3)} \rightarrow z^{(4)} \hat{y} \rightarrow L$

main learning objective

A Penguin
Deep Supervision

Deeply Supervised CNN:

Notation:
- □ - convolutional layer output
- □ - fully connected layer output
- - max pooling layer
- - sigmoid function f
- - softmax function

Forward Pass:

$\mathbf{x} \rightarrow z^{(1)} a^{(1)} \rightarrow z^{(2)} a^{(2)} \rightarrow z^{(3)} a^{(3)} \rightarrow z^{(4)} \hat{y} \rightarrow L$

A Penguin

A Penguin

A Penguin

A Penguin

A Penguin

$\mathbf{l_1}$ $\mathbf{l_2}$ $\mathbf{l_3}$
Deep Supervision

Deeply Supervised CNN:

Notation:
- □ - convolutional layer output
- I - fully connected layer output
- | - max pooling layer
- - sigmoid function f
- - softmax function

Forward Pass:

\mathbf{x}

$z^{(1)} a^{(1)}$$\rightarrow$$z^{(2)} a^{(2)}$$\rightarrow$$z^{(3)} a^{(3)}$$\rightarrow$$z^{(4)} \hat{y}$$\rightarrow$ L

A Penguin

L1
L2
L3

auxiliary learning objectives
Deep Supervision

Deeply Supervised CNN:

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function \(f \)
- softmax function

Forward Pass:

\[x \rightarrow z^{(1)} \rightarrow a^{(1)} \rightarrow z^{(2)} \rightarrow a^{(2)} \rightarrow z^{(3)} \rightarrow a^{(3)} \rightarrow z^{(4)} \rightarrow \hat{y} \rightarrow L \]

gradient flow during backprop
Deep Supervision

Deeply Supervised CNN:

Notation:
- convolutional layer output
- fully connected layer output
- max pooling layer
- sigmoid function \(f \)
- softmax function

Forward Pass:

\(x \)

\(z^{(1)} a^{(1)} \)
\(z^{(2)} a^{(2)} \)
\(z^{(3)} a^{(3)} \) \(z^{(4)} \hat{y} \)

\(L \)

A Penguin

A Penguin

A Penguin

A Penguin

Gradient flow during backprop
Deep Supervision

• Assume that we are given a labeled training dataset

\[\{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\} \]

• Typically we would employ the following loss function:

\[L = -(y \log f(x) + (1 - y) \log (1 - f(x))) \]
Deep Supervision

- Assume that we are given a labeled training dataset
 \[\{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\} \]

- Typically we would employ the following loss function:
 \[L = -(y \log f(x) + (1 - y) \log (1 - f(x))) \]

- Under deeply supervised networks, we will use:
 \[L_{new} = L + \sum_{j} \alpha_j l_j \]
Deep Supervision

• Assume that we are given a **labeled** training dataset

\[\{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\} \]

• Typically we would employ the following loss function:

\[L = -(y \log f(x) + (1 - y) \log (1 - f(x))) \]

• Under deeply supervised networks, we will use:

\[L_{new} = L + \sum_j \alpha_j l_j \text{ **auxiliary learning objectives**} \]
Deep Supervision

• Each auxiliary learning objective can be written as:

\[l_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x))) \]

• \(f_j \) refers to the network’s output after a certain hidden layer \(j \).
Deep Supervision

• Each auxiliary learning objective can be written as:

\[l_j = - (y \log f_j(x) + (1 - y) \log (1 - f_j(x))) \]

• \(f_j \) refers to the network’s output after a certain hidden layer \(j \).

• The differentiation can be done just as it’s done with the main learning objective.
Deep Supervision

• Each auxiliary learning objective can be written as:

\[l_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x))) \]

• \(f_j\) refers to the network’s output after a certain hidden layer \(j\).

• The differentiation can be done just as it’s done with the main learning objective.

• The gradients from different learning objectives are summed in the hidden layers during the back propagation.
Deep Supervision

- Each auxiliary learning objective can be written as:
 \[l_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x))) \]

- \(f_j \) refers to the network’s output after a certain hidden layer \(j \).
- The differentiation can be done just as it’s done with the main learning objective.
- The gradients from different learning objectives are summed in the hidden layers during the backpropagation.
 - Helps to learn more discriminative features
 - Alleviates the vanishing gradient problem
Deep Supervision

• Standard CNN

```python
name: "LeNet"
layers {
  name: "mnist"
type: DATA
top: "data"
top: "label"
data_param {
  source: "mnist-train-leveldb"
scale: 0.00390625
batch_size: 64
}
}
layers {
  name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
convolution_param {
  num_output: 20
  kernel_size: 5
  stride: 1
  weight_filler {
    type: "xavier"
  }
  bias_filler {
    type: "constant"
  }
}
}
layers {
  name: "pool2"
type: POOLING
bottom: "conv1"
top: "pool2"
pooling_param {
  pool: MAX
  kernel_size: 2
  stride: 2
}
}
layers {
  name: "i1"
type: INNER_PRODUCT
bottom: "pool2"
top: "i1"
inner_product_param {
  num_output: 500
  weight_filler {
    type: "xavier"
  }
  bias_filler {
    type: "constant"
  }
}
}
```
Deep Supervision

- Standard CNN

```python
layers {
  name: "ipl"
  type: INNER_PRODUCT
  bottom: "pool2"
  top: "ipl"
  blobs_lr: 1
  blobs_lr: 2
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "ipl"
  top: "ipl"
}
layers {
  name: "ip2"
  type: INNER_PRODUCT
  bottom: "ipl"
  top: "ip2"
  blobs_lr: 1
  blobs_lr: 2
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "ip2"
  bottom: "label"
}
```
Deep Supervision

- Standard CNN

```python
layers {
  name: "ip1"
  type: INNER_PRODUCT
  bottom: "pool2"
  top: "ip1"
  blobs_lr: 1
  blobs_lr: 2
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
```

Layer that produces predictions
Deep Supervision

- Standard CNN

```
layers {
  name: "ip1"
  type: INNER_PRODUCT
  bottom: "pool2"
  top: "ip1"
  blobs_lr: 1
  blobs_lr: 2
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "ip1"
  top: "ip1"
}
layers {
  name: "ip2"
  type: INNER_PRODUCT
  bottom: "ip1"
  top: "ip2"
  blobs_lr: 1
  blobs_lr: 2
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "ip2"
  bottom: "label"
}````
Deep Supervision

- Deeply Supervised CNN
Deep Supervision

- Deeply Supervised CNN

A side layer that produces predictions
Deep Supervision

- Deeply Supervised CNN

```
name: "LeNet"
layers {
 name: "mnist"
 type: DATA
 top: "data"
 top: "label"
 data_param {
 source: "mnist-train-leveldb"
 scale: 0.00390625
 batch_size: 64
 }
}
layers {
 name: "conv1"
 type: CONVOLUTION
 bottom: "data"
 top: "conv1"
 blobs_lr: 1
 blobs_lr: 2
 convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layers {
 name: "pool1"
 type: POOLING
 bottom: "conv1"
 top: "pool1"
 pooling_param {
 pool: MAX
 kernel_size: 2
 stride: 2
 }
}
layers {
 name: "ip1_side"
 type: INNER_PRODUCT
 bottom: "pool1"
 top: "ip1_side"
 blobs_lr: 1
 blobs_lr: 2
 inner_product_param {
 num_output: 10
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layers {
 name: "l1"
 type: SOFTMAX_LOSS
 bottom: "ip1_side"
 bottom: "label"
}
```
Some interesting results:

Figure 3: Average absolute value of gradient matrices during the training on MNIST for (a) weights; (b) biases.
Some interesting results:

Figure 3: Average absolute value of gradient matrices during the training on MNIST for (a) weights; (b) biases.

- Deep supervision helps to reduce the vanishing gradient problem!
Deep Supervision

Some interesting results:

(a) by DSN
(b) by CNN

• Learned features are more discriminative
Deep Supervision

Some interesting results:

- Learned features are more discriminative
Some interesting results:

- Deep supervision reduces testing error without overfitting the training data.
Exploding Gradients

\[
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1) x
\]

\[
= \frac{\partial L}{\partial a_4} \sigma'(z_4) w_4 \sigma'(z_3) w_3 \sigma'(z_2) w_2 \sigma'(z_1) x
\]
Exploding Gradients

\[ \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1) x \]

\[ = \frac{\partial L}{\partial a_4} \sigma'(z_4) w_4 \sigma'(z_3) w_3 \sigma'(z_2) w_2 \sigma'(z_1) x \]

\[ > |1| \quad > |1| \quad > |1| \]

- An instance of exploding gradients
Exploding Gradients

Exploding gradients:
- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.
Exploding Gradients

**Exploding gradients:**
- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.

- **Solution #1:** reduce the learning rate
Exploding Gradients

Exploding gradients:
- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.

Solution #1: reduce the learning rate
Solution #2: clip the gradients
Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.
Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.

• We can accelerate the learning using the momentum method.
Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.

• We can accelerate the learning using the momentum method.

• The momentum method introduces a speed variable, that keeps track of the direction and speed at which the parameters move through the parameter space.
Momentum

Standard gradient descent:

• Learning rule:

\[ \theta = \theta - \epsilon \frac{\partial L}{\partial w} \]
Momentum

Standard gradient descent:
• Learning rule:

\[ \theta = \theta - \epsilon \frac{\partial L}{\partial w} \]

Gradient descent with momentum:
• Learning rule:

\[ v = \alpha v - \epsilon \frac{\partial L}{\partial w} \]
Momentum

**Standard gradient descent:**

- Learning rule:

\[ \theta = \theta - \epsilon \frac{\partial L}{\partial w} \]

**Gradient descent with momentum:**

- Learning rule:

\[ v = \alpha v - \epsilon \frac{\partial L}{\partial w} \]

\[ \theta = \theta + v \]
Momentum

Standard gradient descent:
• Learning rule:

\[
\theta = \theta - \epsilon \frac{\partial L}{\partial w}
\]

Gradient descent with momentum:
• Learning rule:

\[
v = \alpha v - \epsilon \frac{\partial L}{\partial w}\]
\[
\theta = \theta + v
\]

• Makes it more difficult for the parameters to fluctuate a lot, which makes learning more stable
Momentum

SGD

SGD with Momentum
• Momentum helps to achieve more direct path towards local minimum
Momentum

- Momentum helps to achieve more direct path towards local minimum
- Therefore, learning becomes faster.
Batch Normalization

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by randomly selecting N samples from the training dataset, and averaging the gradient across them during backprop).
Batch Normalization

Batch Training Mode:
• SGD training is typically done in batch mode (e.g. by randomly selecting $N$ samples from the training dataset, and averaging the gradient across them during backprop).

Issues:
• Samples in different batches can be very different.
• Small changes to the network parameters amplify as the network becomes deeper.
• This changes the internal node distribution in many layers.
• The layers need to continuously adapt to this new internal node distribution, which slows down the training.
Batch Normalization:

- In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[
\begin{align*}
\text{Input: } & \text{ Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_1,...,x_m\}; \\
& \text{Parameters to be learned: } \gamma, \beta \\
\text{Output: } & \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize}
\end{align*}
\]
Batch Normalization:

- In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{ // mini-batch mean}
\]

\[
\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{ // mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{ // normalize}
\]

What's wrong with this approach?
Batch Normalization:

- In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean}\]
\[\sigma^2_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad // \text{mini-batch variance}\]
\[\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma^2_B + \epsilon}} \quad // \text{normalize}\]

What happens if we normalize the inputs to the sigmoid function?
Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[
\begin{align*}
\text{Input:} & \quad \text{Values of } x \text{ over a mini-batch: } B = \{x_1\ldots m\}; \\
\text{Parameters to be learned:} & \quad \gamma, \beta \\
\text{Output:} & \quad \{y_i = \text{BN}_{\gamma, \beta}(x_i)\}
\end{align*}
\]

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & \text{// mini-batch mean} \\
\sigma^2_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 & \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma^2_B + \epsilon}} & \text{// normalize}
\end{align*}
\]

• What happens if we normalize the inputs to the sigmoid function?
• We may lose representational power (e.g. ability to represent non-linear functions)
Batch Normalization:

- In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[
\begin{align*}
\text{Input: } & \text{ Values of } x \text{ over a mini-batch: } B = \{x_1 \ldots m\}; \\
& \text{Parameters to be learned: } \gamma, \beta \\
\text{Output: } & \{y_i = \text{BN}_{\gamma,\beta}(x_i)\}
\end{align*}
\]

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \quad \quad \quad \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

- Scaling and shifting restores the original representational power.
Batch Normalization:

- In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

\[ \begin{align*}
\mu_B &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & \text{// mini-batch mean} \\
\sigma_B^2 &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 & \text{// mini-batch variance} \\
\hat{x}_i &\leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} & \text{// normalize} \\
y_i &\leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) & \text{// scale and shift}
\end{align*} \]

- Scaling and shifting restores the original representational power.
- Two parameters gamma and beta learned during training.
Batch Normalization

Backpropagation:
• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

\[
\begin{align*}
\text{Input:} & \quad \text{Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_1,...,m\}; \\
\text{Parameters to be learned: } & \gamma, \beta \\
\text{Output:} & \quad \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\

\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \quad \text{// mini-batch mean} \\
\sigma_{\mathcal{B}}^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]
Batch Normalization

Backpropagation:

- Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

\[
\begin{align*}
\text{Input:} & \quad \text{Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_1...m\}; \\
\text{Parameters to be learned:} & \quad \gamma, \beta \\
\text{Output:} & \quad \{y_i = \text{BN}_{\gamma,\beta}(x_i)\}
\end{align*}
\]

\[
\begin{align*}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & \quad \text{// mini-batch mean} \\
\sigma_{\mathcal{B}}^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 & \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & \quad \text{// scale and shift}
\end{align*}
\]

Which gradients do we need to compute during a backward pass?
Batch Normalization

Backpropagation:

Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

\[
\begin{align*}
\text{Input:} & \quad \text{Values of } x \text{ over a mini-batch: } B = \{x_1 \ldots m\}; \\
& \text{Parameters to be learned: } \gamma, \beta \\
\text{Output:} & \quad \{y_i = \text{BN}_{\gamma, \beta}(x_i)\} \\
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]
Batch Normalization

Backpropagation:

- Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

\[
\begin{align*}
\text{Input: } & \text{ Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_1...m\}; \\
& \text{Parameters to be learned: } \gamma, \beta \\
\text{Output: } & \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\
\end{align*}
\]

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 & \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} & \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & \text{// scale and shift}
\end{align*}
\]
Batch Normalization

Backpropagation:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

Input: Values of $x$ over a mini-batch: $\mathcal{B} = \{x_1, \ldots, x_m\}$; Parameters to be learned: $\gamma, \beta$

Output: $\{y_i = \text{BN}_{\gamma, \beta}(x_i)\}$

\[ \mu_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \] // mini-batch mean

\[ \sigma^2_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2 \] // mini-batch variance

\[ \hat{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}} \] // normalize

\[ y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \] // scale and shift

Parameter gradients
Batch Normalization

**Input:** Values of $x$ over a mini-batch: $B = \{x_1...m\}$; Parameters to be learned: $\gamma, \beta$

**Output:** $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta = \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

**Intermediate gradients:**

\[
\frac{\partial l}{\partial \hat{x}_i} = \frac{\partial l}{\partial y_i} \cdot \gamma
\]
Batch Normalization

**Input:** Values of $x$ over a mini-batch: $B = \{x_1...m\}$; Parameters to be learned: $\gamma, \beta$

**Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$

- $\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ \hspace{1cm} // mini-batch mean
- $\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2$ \hspace{1cm} // mini-batch variance

- $\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ \hspace{1cm} // normalize
- $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ \hspace{1cm} // scale and shift

**Intermediate gradients:**

\[
\frac{\partial l}{\partial \hat{x}_i} = \frac{\partial l}{\partial y_i} \cdot \gamma
\]

\[
\frac{\partial l}{\partial \sigma_B^2} = \sum_{i=1}^{m} \frac{\partial l}{\partial \hat{x}_i} \cdot (x_i - \mu_B) \cdot \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2}
\]
Batch Normalization

**Input:** Values of \( x \) over a mini-batch: \( B = \{x_1...m\} \); Parameters to be learned: \( \gamma, \beta \)

**Output:** \( \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \)

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean}
\]

\[
\sigma^2_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma^2_B + \epsilon}} \quad \text{// normalize}
\]

\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\]

**Intermediate gradients:**

\[
\frac{\partial \ell}{\partial \hat{x}_i} = \frac{\partial \ell}{\partial y_i} \cdot \gamma
\]

\[
\frac{\partial \ell}{\partial \sigma^2_B} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \hat{x}_i} \cdot (x_i - \mu_B) \cdot \frac{-1}{2} (\sigma^2_B + \epsilon)^{-3/2}
\]

\[
\frac{\partial \ell}{\partial \mu_B} = \left( \sum_{i=1}^{m} \frac{\partial \ell}{\partial \hat{x}_i} \cdot \frac{-1}{\sqrt{\sigma^2_B + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma^2_B} \cdot \frac{\sum_{i=1}^{m} -2(x_i - \mu_B)}{m}
\]
Batch Normalization

**Input:** Values of $x$ over a mini-batch: $B = \{x_1...m\}$; Parameters to be learned: $\gamma, \beta$

**Output:** $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

Gradient to send backwards:

\[
\frac{\partial l}{\partial x_i} = \frac{\partial l}{\partial \hat{x}_i} \cdot \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial l}{\partial \sigma_B^2} \cdot \frac{2(x_i - \mu_B)}{m} + \frac{\partial l}{\partial \mu_B} \cdot \frac{1}{m}
\]
Batch Normalization

**Input:** Values of $x$ over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: $\gamma, \beta$

**Output:** $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

**Parameter gradients:**

\[
\begin{align*}
\frac{\partial \ell}{\partial \gamma} &= \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \hat{x}_i \\
\frac{\partial \ell}{\partial \beta} &= \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}
\end{align*}
\]
Batch Normalization:

- Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.
Batch Normalization:

- Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

Batch normalization makes training much faster!
Batch Normalization:

- Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.
Batch Normalization:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

Batch normalization makes training much faster!
Summary

Key Take-Aways:
- Specifying the right loss (e.g. cross entropy) is important.
- Picking the right activation function (e.g. RELU) is also imperative.
- We can reduce vanishing gradient problem via deep supervision.
- Reducing the learning rate, and clipping gradients helps to prevent exploding gradient problem.
- Momentum methods allow faster and more stable learning.
- Batch normalization significantly speeds up the training.