Different scale of image encodes different edge response.
Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*
Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*
Why does this look so bad?
Sampling

Good sampling:
• Sample often or,
• Sample wisely

Bad sampling:
• see aliasing in action!
Gaussian pre-filtering

Solution: filter the image, *then* subsample

- Filter size should double for each $\frac{1}{2}$ size reduction. Why?
Subsampling with Gaussian pre-filtering

Solution: filter the image, *then* subsample

- Filter size should double for each $\frac{1}{2}$ size reduction. Why?
- How can we speed this up?
Comparison

1/2

1/4 (2x zoom)

1/8 (4x zoom)
Image Reduce

[Burt & Adelson, 1983]

\[g_0 = \text{Image} \]

\[g_1 = \text{REDUCE}[g_{l-1}] \]
Image Reduce

\[g_0 = \text{Image} \]

\[g_1 = \text{REDUCE}[g_{l-1}] \]

\[g_l(i, j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) g_{l-1}(2i + m, 2j + n) \]

\[w(m, n) = \hat{w}(m)\hat{w}(n) \quad \sum_{m} \hat{w}(m) = 1 \quad \hat{w}(m) = \hat{w}(-m) \]
Image Reduce

\[g_0 = \text{IMAGE}\]

\[g_1 = \text{REDUCE}[g_{l-1}]\]

\[g_l(i, j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) g_{l-1}(2i + m, 2j + n)\]

\[g_l = [g_{l-1} \otimes w] \downarrow 2\]
Choice in weighting function

\[\hat{w}(0) = a \]

\[\hat{w}(1) = \hat{w}(-1) = \frac{1}{4} \]

\[\hat{w}(1) = \hat{w}(-1) = \frac{1}{4} - \frac{a}{2} \]
Image Expansion

\[g_{l-1} = \text{EXPAND}[g_l] \]

\[g_l(i, j) = 4 \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) \cdot g_{l-1} \left(\frac{i-m}{2}, \frac{j-n}{2} \right) \]

\((i-m)/2 \) and \((j-n)/2 \) are integers
Image Expansion

\[g_{l-1} = \text{EXPAND}[g_l] \]

\[g_l(i, j) = 4 \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) \cdot g_{l-1} \left(\frac{i-m}{2}, \frac{j-n}{2} \right) \]

\((i-m)/2 \) and \((j-n)/2 \) are integers.
Image Expansion

\[g_{l-1} = \text{EXPAND}[g_l] \]

\[g_l(i, j) = 4 \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) \cdot g_{l-1} \left(\frac{i-m}{2}, \frac{j-n}{2} \right) \]

\((i-m)/2\) and \((j-n)/2\) are integers
$g_{l-1} = \text{EXPAND}[g_l]$

$g_l(i, j) = 4 \sum_{m=\pm 2}^{2} \sum_{n=\pm 2}^{2} w(m, n) \cdot g_{l-1} \left(\frac{i-m}{2}, \frac{j-n}{2} \right)$

$(i-m)/2$ and $(j-n)/2$ are integers
2D Image Expansion (part 1)

g_1 padded with 0s

2D Gaussian kernel
2D Image Expansion (part 2)

g_1

$padded with 0s$

g_0

2D Gaussian kernel
2D Image Expansion (part3)

\[g_1 \]

\[g_1 \text{ padded with 0s} \]

\[g_0 \]

2D Gaussian kernel
2D Image Expansion (part 4)

g_1 padded with 0s

2D Gaussian kernel
What does blurring take away?
What does blurring take away?

smoothed (5x5 Gaussian)
Difference as result of smoothing

original - smoothed
What does blurring take away?

1x smoothed (5x5 Gaussian)
What does blurring take away?

2x smoothed (5x5 Gaussian)
Difference of Gaussian

1x smoothed – 2x smoothed
What does blurring take away?

2x smoothed (5x5 Gaussian)
3x smoothed (5x5 Gaussian)
Difference of Gaussian

2x smoothed – 3x smoothed
3x smoothed (5x5 Gaussian)
4x smoothed (5x5 Gaussian)
3x smoothed – 4x smoothed
Laplacian Image

\[L_1 = g_l - \text{EXPAND}[g_{l+1}] \]
Extraction of Laplacian

\[\otimes G \downarrow_2 \]

\[\otimes G \uparrow_2 \]

\[\otimes G \downarrow_2 \]

\[\otimes G \uparrow_2 \]
Gaussian pyramid is smooth => can be subsampled
Laplacian pyramid has narrow band of frequency => compressed
\[g_N = L_N \quad g_l = L_l + \text{EXPAND}[g_{l+1}] \]
Pyramid Blending
laplacian level 4

laplacian level 2

laplacian level 0
top pyramid

bottom pyramid
laplacian level 4

laplacian level 2

aplacian level 0

top pyramid
bottom pyramid
laplacian level 4

laplacian level 2

laplacian level 0

top pyramid

bottom pyramid

blended pyramid
laplacian level 4

laplacian level 2

laplacian level 0

top pyramid bottom pyramid blended pyramid
Laplacian levels:

- Level 4
- Level 2
- Level 0

Images:

- Top pyramid
- Bottom pyramid
- Blended pyramid
Laplacian Pyramid: Blending

General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid $MASK$ from selected region R
3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
 \[LS(i, j) = MASK(i, j,) \times LA(i, j) + (1 - MASK(i, j)) \times LB(i, j) \]
4. Collapse the LS pyramid to get the final blended image