Feature Detection

SIFT (Scale Invariant Feature Transform)
Feature Detection

SIFT (Scale Invariant Feature Transform)
Feature Detection
SIFT (Scale Invariant Feature Transform)
Feature Matching
Feature Descriptor

descriptor
Feature Matching

Nearest Neighbor Search
HOG Features

Input image

Normalise gamma & colour

Compute gradients

Accumulate weighted votes for gradient orientation over spatial cells

Normalise contrast within overlapping blocks of cells

Collect HOGs for all blocks over detection window

Feature vector, $f^* = [\ldots, \ldots, \ldots, \ldots]$
Create cell histograms

- Each pixel in cell casts weighted vote based on gradient magnitude centered there
 - Weighted by applying a Gaussian spatial window to each pixel before accumulating orientation votes into cells $\rightarrow (\sigma = 5 \times \text{block width})$
- Votes are accumulated in 9 Histogram channels (orientation bins) spread evenly over 0-180 degrees (Or 0-360 degrees if signed values desired)

Descriptor Blocks

- To account for illumination/contrast changes the cells must be grouped into “blocks” and normalized
- HOG descriptor is a vector of components of normalized cell histograms from all the block regions
- Author’s optimum R-HOG (10% miss rate)
 - 3 parameters
 - 3x3 cell blocks
 - 6x6 pixel cells
 - 9 histogram channels (orientation bins)

"Human Detection PHD Thesis" Navneet Dalal 2006
Arrangement of Histograms in HOG Feature Vectors

The figure below shows an image with six cells.

If you set the BlockSize to \([2\ 2]\), it would make the size of each HOG block, 2-by-2 cells. The size of the cells are in pixels.

The HOG feature vector is arranged by HOG blocks. The cell histogram, \(H(C_{yx})\), is 1-by-NumBins.

The figure below shows the HOG feature vector with a 1-by-1 cell overlap between blocks.
Normalize the Blocks

- V is vector containing non-normalized histogram data and e is a small constant (Not very important over the larger ranges – $1e^{-3}$ to $5e^{-2}$)

Typical Detector Window

- Authors used 64x128 detection window
- 16 pixels of margin around person on all four sides
- Decreasing window size or person size in image decreases performance
SIFT
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions
SIFT vector formation

- Orientation is defined relative to the orientation of the detected Sift feature

Local orientation histogram

Image gradients

Keypoint descriptor
SIFT Fish

Sharon Cummings @ flickr
Laplacian-of-Gaussian = “blob” detector
At a given point in the image:

- We define the *characteristic scale* as the scale that produces peak of Laplacian response.
Lowe’s Scale-space Interest Points

• **Laplacian of Gaussian** kernel
• Scale-space detection
 – Find local maxima across scale/space
 – A good “blob” detector

\[
G(x, y, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \frac{x^2+y^2}{\sigma^2}}
\]

\[
\nabla^2 G(x, y, \sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}
\]
Scale-space blob detection

\[L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma \]

Squared filter response maps

\[\Rightarrow \text{List of } (x, y, \sigma) \]
Scale-space blob detector: Example
\[\nabla^2 G_\sigma (x, y) = \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2} \right) G_\sigma (x, y) \]

\[G(x, y, k\sigma) - G(x, y, \sigma) \approx (k - 1)\sigma \frac{\partial G}{\partial \sigma} = (k - 1)\sigma^2 \nabla^2 G \]
Lowe’s Scale-space Interest Points: Difference of Gaussians

- Gaussian is an ad hoc solution of heat diffusion equation

\[\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G. \]

- Hence

\[G(x, y, k\sigma) - G(x, y, \sigma) \approx (k - 1)\sigma^2 \nabla^2 G. \]

- \(k \) is not necessarily very small in practice
Technical detail

- We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(Laplacian)

\[DoG = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)
How many scales?

Convolution computing:
At each scale: $\text{MxN} \times \text{KxK}$ operations

Squared filter response maps

$L_{xx}(\sigma) + L_{yy}(\sigma)$
DoG Image Pyramid

\[\sigma_0, k\sigma_0, k^2\sigma_0, k^3\sigma_0, k^4\sigma_0, k^5\sigma_0, k^6\sigma_0, \ldots \]

\[\sigma_0 \rightarrow 2\sigma_0 \]

- image MxN, filter 2Kx2K
- image M/2xN/2, filter, KxK
DoG Image Pyramid

\[\sigma_0 \rightarrow 2\sigma_0 \]
\[\sigma_{o,s} = \sigma_0 2^{k s} \]

\[\sigma_{o,s} = \sigma_0 2^{o + k s} \]
Local Extrema Detection

- Maxima and minima
- Compare x with its 26 neighbors at 3 scales
Frequency of sampling in scale

• s: intervals in each octave of scale space \((\sigma_0 \rightarrow 2\sigma_0)\)
 – \(k=2^{\{1/s\}}\)
 \[
 \sigma_{o,s} = \sigma_0 2^o k^s
 \]

• In order to cover a complete octave for extrema detection
 – \(S = s+3\) Gaussian images are produced for each octave
 • s: \{-1,S+1\}
 – \(s+2\) DoG images
 – \(s\) scales for extrema detection
SIFT Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)
- Taylor expansion around point:

\[
D(x) = D + \frac{\partial D^T}{\partial x} x + \frac{1}{2} x^T \frac{\partial^2 D}{\partial x^2} x
\]

\[
\hat{x} = -\frac{\partial^2 D^{-1}}{\partial x^2} \frac{\partial D}{\partial x}
\]
Scale Invariant Detectors

- **Harris-Laplacian**

 Find local maximum of:

 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

- **SIFT (Lowe)**

 Find local maximum of:

 - Difference of Gaussians in space and scale

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions
SIFT vector formation

- Orientation is defined relative to the orientation of the detected Sift feature

Local orientation

Histogram

Image gradients

Keypoint descriptor
Feature Extraction for Image Classifier

(only the most coarse level shown)

Descriptor histogram of Scale level 3
- Weight each descriptor exponential to scale level
- The final descriptor representation has 128x29 bins
Examples from training set

Examples from test set

Feature Extraction for Image Classifier
Features Sample

1. Color Histogram

2. HOG feature
- Precision-Recall curve of our Image classifier
- Trained/Tested on image set generated from stereo detection
- RBF kernel SVM used
The Government shall have the right to duplicate, use, or disclose the data to the extent provided in the Robotics CTA Cooperative Research Agreement DAAD19-01-2-0012.

Typical Missed Detections

- Occlusions
- Incomplete stereo detection
- Lack of training data

Typical False Positives

- Human-like Shapes & Clutters
Deep...