Image Warping
Autostitching on A9.com images,

Spruce street, Philadelphia
Image Warping

Slides from 15-463: Computational Photography
Alexei Efros, CMU, Fall 2005
Image Warping

image filtering: change **range** of image
\[g(x) = T(f(x)) \]

image warping: change **domain** of image
\[g(x) = f(T(x)) \]
Image Warping

image filtering: change **range** of image
\[g(x) = T(f(x)) \]

image warping: change **domain** of image
\[g(x) = f(T(x)) \]
Parametric (global) warping

Examples of parametric warps:

- translation
- rotation
- aspect
- affine
- perspective
- cylindrical
Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- Is the same for any point p
- Can be described by just a few numbers (parameters)

Let's represent T as a matrix:

$$p' = M \cdot p$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
Scaling a coordinate means multiplying each of its components by a scalar.

Uniform scaling means this scalar is the same for all components:

\[\times 2 \]
Scaling

Non-uniform scaling: different scalars per component:

- $X \times 2$
- $Y \times 0.5$
Scaling

Scaling operation:

\[x' = ax \]
\[y' = by \]

Or, in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & 0 \\
 0 & b
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

What’s inverse of S?
2-D Rotation

\[
\begin{align*}
(x', y') & = (x, y) \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \\
& = x \cos(\theta) - y \sin(\theta), \\
y' & = x \sin(\theta) + y \cos(\theta)
\end{align*}
\]
2-D Rotation

\[x = r \cos (\phi) \]
\[y = r \sin (\phi) \]
\[x' = r \cos (\phi + \theta) \]
\[y' = r \sin (\phi + \theta) \]

Trig Identity…
\[x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta) \]
\[y' = r \sin(\phi) \sin(\theta) + r \cos(\phi) \cos(\theta) \]

Substitute…
\[x' = x \cos(\theta) - y \sin(\theta) \]
\[y' = x \sin(\theta) + y \cos(\theta) \]
2-D Rotation

This is easy to capture in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\(R \)

Even though \(\sin(\theta) \) and \(\cos(\theta) \) are nonlinear functions of \(\theta \),

- \(x' \) is a linear combination of \(x \) and \(y \)
- \(y' \) is a linear combination of \(x \) and \(y \)

What is the inverse transformation?

- Rotation by \(-\theta\)
- For rotation matrices, \(\det(R) = 1 \) so \(R^{-1} = R^T \)
2x2 Matrices

What types of transformations can be represented with a 2x2 matrix?

2D Identity?

\[
x' = x \\
y' = y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

2D Scale around (0,0)?

\[
x' = s_x \times x \\
y' = s_y \times y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]
2x2 Matrices

What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

\[x' = \cos \Theta \cdot x - \sin \Theta \cdot y \]
\[y' = \sin \Theta \cdot x + \cos \Theta \cdot y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos \Theta & -\sin \Theta \\
 \sin \Theta & \cos \Theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

2D Shear?

\[x' = x + sh_x \cdot y \]
\[y' = sh_y \cdot x + y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 1 & sh_x \\
 sh_y & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

\[x' = -x \]
\[y' = y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
= \begin{bmatrix}
 -1 & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

2D Mirror over (0,0)?

\[x' = -x \]
\[y' = -y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
= \begin{bmatrix}
 -1 & 0 \\
 0 & -1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
2x2 Matrices

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

\[x' = x + t_x \]
\[y' = y + t_y \]

NO!

Only linear 2D transformations can be represented with a 2x2 matrix
All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b & e & f \\
 c & d & g & h \\
 i & j & k & l
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Linear Transformations as Change of Basis

Any linear transformation is a basis!!!

- What’s the inverse transform?
- How can we change from any basis to any basis?
- What if the basis are orthogonal?

\[j = (0,1) \]
\[i = (1,0) \]

\[p = 4i + 3j = (4,3) \]

\[p' = 4u + 3v \]

\[p_x' = 4u_x + 3v_x \]
\[p_y' = 4u_y + 3v_y \]

Any linear transformation is a basis!!!

- What’s the inverse transform?
- How can we change from any basis to any basis?
- What if the basis are orthogonal?
Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

\[x' = x + t_x \]
\[y' = y + t_y \]
Homogeneous Coordinates

Homogeneous coordinates

- represent coordinates in 2 dimensions with a 3-vector

\[
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

\[x' = x + t_x \]
\[y' = y + t_y \]

A: Using the rightmost column:

\[
\text{Translation} = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Translation

Example of translation

Homogeneous Coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} =
\begin{bmatrix}
 x + t_x \\
 y + t_y \\
 1
\end{bmatrix}
\]

\[t_x = 2 \]
\[t_y = 1 \]
Homogeneous Coordinates

Add a 3rd coordinate to every 2D point
• \((x, y, w)\) represents a point at location \((x/w, y/w)\)
• \((x, y, 0)\) represents a point at infinity
• \((0, 0, 0)\) is not allowed

Convenient coordinate system to represent many useful transformations

\((2,1,1)\) or \((4,2,2)\) or \((6,3,3)\)
Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

Translate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Rotate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 \cos \Theta & -\sin \Theta & 0 \\
 \sin \Theta & \cos \Theta & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Shear

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & sh_x & 0 \\
 sh_y & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and
• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin
• Lines map to lines
• Parallel lines remain parallel
• Ratios are preserved
• Closed under composition
• Models change of basis

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]
Projective Transformations

Projective transformations …
• Affine transformations, and
• Projective warps

Properties of projective transformations:
• Origin does not necessarily map to origin
• Lines map to lines
• Parallel lines do not necessarily remain parallel
• Ratios are not preserved
• Closed under composition
• Models change of basis

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]
Matrix Composition

Transformations can be combined by matrix multiplication

\[
\begin{bmatrix}
x' \\
y' \\
w'
\end{bmatrix} = \begin{bmatrix}
1 & 0 & tx \\
0 & 1 & ty \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
sx & 0 & 0 \\
0 & sy & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
w
\end{bmatrix}
\]

\[
p' = T(t_x, t_y) \quad R(\Theta) \quad S(s_x, s_y) \quad p
\]
2D image transformations

These transformations are a nested set of groups
 • Closed under composition and inverse is a member
Image warping

Given a coordinate transform \((x', y') = h(x, y)\) and a source image \(f(x, y)\), how do we compute a transformed image \(g(x', y') = f(T(x, y))\)?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image

Q: what if pixel lands “between” two pixels?
Forward warping

Send each pixel \(f(x,y) \) to its corresponding location \((x',y') = T(x,y) \) in the second image.

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels \((x',y') \)
 – Known as “splatting”
Inverse warping

Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x',y') \) in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x',y')\) in the first image.

Q: what if pixel comes from “between” two pixels?

A: *Interpolate* color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic
Bilinear interpolation

Sampling at $f(x,y)$:

$$f(x, y) = (1 - a)(1 - b) \ f[i, j]$$
$$+ a(1 - b) \ f[i + 1, j]$$
$$+ ab \ f[i + 1, j + 1]$$
$$+ (1 - a)b \ f[i, j + 1]$$
Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
 • however, it requires an invertible warp function—not always possible...