Bias-Variance Decomposition

Definitions

$$
\begin{aligned}
& \operatorname{Bias}(\hat{y})=E[\hat{y}-y]=E[\hat{y}]-E[y] \\
& \operatorname{Var}(\hat{y})=E\left[(\hat{y}-E[\hat{y}])^{2}\right] \\
& \operatorname{Var}(y)=E\left[(y-E[y])^{2}\right]=\sigma^{2} \text { (noise or irreducibly uncertainty) }
\end{aligned}
$$

Draw many training sets. On each one compute the average difference between average prediction and average truth; this gives the bias.
Note that for linear regression $E[y]=x w$ and that hidden inside \hat{y} is the model complexity and the training set size.

Error (Sum of squared error)
$E\left[(y-\hat{y})^{2}\right]=\operatorname{Bias}(\hat{y})^{2}+\operatorname{Var}(\hat{y})+\sigma^{2}$

Proof sketch

$$
\begin{aligned}
E\left[(y-\hat{y})^{2}\right] & =E\left[(y-E[\hat{y}]+E[\hat{y}]-\hat{y})^{2}\right] \\
& =E\left[\left((y-E[\hat{y}])^{2}+(E[\hat{y}]-\hat{y})^{2}+2(y-E[\hat{y}])(E[\hat{y}]-\hat{y})\right]\right. \\
& =\text { bias+noise }+ \text { variance }+ \text { this term vanishes }
\end{aligned}
$$

Now do a similar trick to pull out the bias and noise from within the first term.

$$
\begin{aligned}
E\left[(y-E[\hat{y}])^{2}\right] & =E\left[(y-E[y]+E[y]-E[\hat{y}])^{2}\right] \\
& =E\left[(y-E[y])^{2}\right]+E[(y-\hat{y})]^{2}+\text { cross term that vanishes } \\
& =\text { irreducible uncertainty }+ \text { bias }^{2}
\end{aligned}
$$

