
CIS520 Project Report for A Channeling Mire

Sean O’Hara, Efstathios Kanterakis, Carl Mackey

1 Blogs

For blogs, we used a bag-of-words approach. Each blog was viewed as a sparse vector of
the counts of uses of each word. We additionally used the porter stemming algorithm to
produce smaller vectors that would (hopefully) better reflect the concepts discussed in the
blogs. From the original 89,000 or so entries, the stemmed dictionary had only 55,000.
However, there may be words in the test set that share stems with the training set, that we
are blind to.

We eventually went with simple SVM on the stemmed word bags for the blog posts,
producing as much as 6% improvement in age over the baseline in crossvalidation, but not a
significant improvement in gender (about 2%). As seen in the final test results, it actually
performed worse on gender.

Our final test results were 72.2% for age and 72.2% for gender.

1.1 LSI + SVM

We experimented with using latent semantic indexing (LSI) for dimensionality reduction
(We didn’t realize until later that we needed to subtract the empirical means... so maybe
that contributed to the poor performance). We also tried various local and global weighting
functions (as Wikipedia suggested, log+entropy seemed to do well). The entropy weighting
algorithm required a bit of effort to work in Matlab, since it would typically require an
intermediate matrix whose dimensions were too large for Matlab, and couldn’t be made
sparse.

To deal with excessive size of the transformation matrix in SVD (since we must store an
m by k matrix), we deleted near-zero values, keeping only the 10,000 highest values (rather
than m) for each of the k vectors, and storing it in a sparse matrix. It was noted that higher
numbers of non-zero values improved results, though it could easily pass the 50 megabyte
limit. With higher k, the SVD took longer to compute, which was inconvenient.

In crossvalidation, the best we could get was 68.5% for age and 65.4% for gender, trying
both stemmed, not stemmed, and combined – unfortunately faring even worse on the test
set. Furthermore, using the method of making the concept matrix sparse would decrease
performance, by about 2% when taking the highest 10,000, and about 4% when taking the
highest 1,000. We had high hopes for this method, as intuitively this was the most promising.
Perhaps due to forgetting to subtract the means, it did not do as well as desired.

1



1.2 k-NN and Boosting

We additionally attempted to use k-nearest neighbors and a downloaded decision-stump
boosting library for the blogs, but they fared very poorly, rarely getting more than 60%
in crossvalidation on age or gender using either algorithm. With k-NN, we found k = 30
or so to be best, with k ≤ 9 often not be more than a few percent better than random
in crossvalidation. Boosting required hundreds or thousands of iterations before becoming
reasonable even in terms of training accuracy, but would tend to overfit when testing on
crossvalidation. The poor performance isn’t too surprising, as the decision stumps can only
take into account one dimension per iteration, while there are thousands of dimensions, and
the k-nearest neighbors could easily overfit.

1.3 Pronouns

In an attempt to improve gender accuracy, we looked in literature for known differences
between the writing styles of men and women. One paper, from Argamon et Al, detailed
how females use more pronouns than males in formal writing1. We identified 68 pronouns
in our stemmed dictionary, and created feature vectors by counting the number of pronoun
occurrences in each blog post. Using a 10-fold cross validation SVM model we were able to
attain an accuracy of 55%. It was thought that certain pronouns could be used in similar
counts across all genders, which could lead to a decrease in accuracy. In order to combat this,
we ran a PCA to determine the five least significant pronouns: neither, anybody, yourselves,
whomever, and whichever. The accuracy of a 10-fold SVM model using the remaining 63
pronouns improved to 61.2% accuracy, which was still short of the mark. While these few
pronouns were able to describe a large amount of the variability between sexes, it was not
enough to beat the baseline. Attempts to incorporate this into our LSI+SVM model were
not successful.

2 Images

In order to build an efficient classifier for images, we first cropped them to remove some of
the confounding background noise. We also simplified our computation by converting images
to grayscale, which did not affect classification accuracy. Using just the face did not seem as
a compromise initially, however, a cropping that included the hair was used later on in an
attempt to improve gender classification. Further pre-processing of the images was carried
out by using the following steps: an adaptive-histogram matching filter to normalize each
image and use the full histogram spectrum, Gaussian blurring, to incorporate neighbourhood
information, and a gradient image, to incorporate edge information. This seemed like a
good pre-processing strategy that was a good compromise between visual information and
processing speed. Training on a combination of the original dataset and a right-left flipped
version of the data significatly improved our classification accuracy, most likely by removing
orientation-dependent features which make the classifier susceptible to less robust features.

1Shlomo Argamon, Moshe Koppel, Jonathan Fine, and Anat Rachel Shimonib. Gender, Genre, and
Writing Style in Formal Written Texts. (http://u.cs.biu.ac.il/∼koppel/papers/male-female-text-final.pdf)

2



A sparse representation of images was also attempted. The ‘graycomatrix’ and ‘grayco-
props’ functions in Matlab were used to extract texture features such as neighbour contrast,
correlation, energy and homogeneity; additionally, the sum of a “canny” binary edge filter
was also used as a feature. This approach however was not able to classify our data well
possibly because it summarized our features too much and was not able to discriminate fine
distinctive characteristics such as wrinkles (for age) or hair (for gender).

Finally, a precomputed kernel was attempted in svmtrain. A tract similarity metric was
used according to methods previously described2. However, this added much computational
overhead and did not improve results much. This method was therefore not carried forward.

2Mark Everingham, Josef Sivic, Andrew Zisserman, Taking the bite out of automated naming of characters
in TV video, Image and Vision Computing, Volume 27, Issue 5,
(http://www.sciencedirect.com/science/article/B6V09-4SF302F-1/2/ee4982d1c127bcc3f073512c388d66e4)

3



Steps Accuracy Gender Age Comments:
Baseline Test Set 79% 40%
whole image Train Set 84.33% 87%

CV 67.5% 48.17%
Slack 16 128

Face Train Set 78.83% 73.50%
CV 72% 50.67%
Slack 16 128

Face Gray Train Set 77.33% 54.67% Grayscale results in little loss
CV 72.67% 49.67%
Slack 16 16

Face Gray sharpened Train Set 85.67% 70.83% Too sparse
CV 73.5% 45%
Slack 16 16

Face Gray Hist Match Train Set 91.19% 72.75% Doesn’t do much
CV 77.65% 46.73%
Slack 16 16

Face gray hist eq Train Set 91.19% 72.75% Improves contrast
CV 77.65% 46.73%
Slack 16 16

Face gray hist eq blur Train Set 84.22% 77.05% Averaging over a neighborhood
CV 78.27% 53.27%
Slack 16 128

+flipped dataset Train Set 99.9% 92.6% Drop orientation-specific training
CV 92.73% 85.15%
Slack 1024 8192

+gradient image Train Set 99.9% 91.9% Incorporates edge features
CV 97.75% 93.34%
Slack 8192 8192

Figure 1: Image Pre-Processing Steps

4



Figure 2: Image Filter Examples

5



3 Libraries Used

Count Unique:
http://www.mathworks.com/matlabcentral/fileexchange/

23333-determine-and-count-unique-values-of-an-array

AdaBoost:
http://www.mathworks.com/matlabcentral/fileexchange/

21317-adaboost

6


