
LATEX tutorial

Cem Karan
Aylin Çalışkan

July 23, 2010

Contents

1 Resources 2

2 Running LATEX 2

3 Basics 3

4 This is the start of a numbered section 3
4.1 This is the start of a numbered subsection . 3

4.1.1 This is the start of a numbered subsubsection . 3

5 Environments 3
5.1 List making environments . 4
5.2 Verbatim environment . 4
5.3 Tabular environment . 5
5.4 Math environment . 5

5.4.1 $ environment . 5
5.4.2 equation and equation* environments . 5
5.4.3 align and align* environments . 5
5.4.4 Some math commands . 6

6 Figures and graphics 7

7 Cross References 9

8 Miscellaneous 9
8.1 Whitespace . 9
8.2 Vertical Spacing . 9

9 Errors 9

Preface

This is an extremely brief tutorial on LATEX, intended to get you up and running quickly on Eniac. If you
are currently reading the PDF version of this file, be sure to download the LATEX version of this file and read
it as well. The best way to learn a new language is to read through examples of it, and then to experiment
with it, and this tutorial is written with the intention and expectation that you will download and read the
LATEX version of the file in addition to the PDF version. Quite a bit of what you read in the PDF file will
be unintelligible without the LATEX file! The LATEX version is called LaTeX_Tutorial.tex. As an aside, the
file suffix for LATEX is usually.tex.

1

1 Resources

The following are excellent resources on LATEX.

• LaTeX: A Document Preparation System (2nd Edition) This is one of two books that everyone always
refers to when they want to learn or do anything with LATEX. Note that it is the short one; the other,
The LaTeX Companion (Tools and Techniques for Computer Typesetting) is much more comprehen-
sive, but also more than you will likely ever want or need.

• LaTeX–A document preparation system

Not to be confused with the book of the same name, this is the main site for LATEX. Ignore the LaTeX3
information; the only version available anywhere is LATEX 2ε. Note that the language itself has not
changed, so that information is still valid.

• TEX User’s Group - TEX is the language that underlies LATEX. This site is dedicate to both LATEX and
TEX, and has extensive documentation on various packages that you can use, as well as tutorials that
you can look through.

• CTAN - The Comprehensive TEX Archive Network. This is where you will go if you are looking for
more packages to use. Packages are exactly what they sound like; things that you include via the
\usepackage{} command. See the start of the LaTeX_Tutorial.tex file for a whole list of packages
that this file has included. Note that if you include it but don’t use it, you’re not costing yourself
anything. The easiest way to handle packages is to leave all the ones that you use regularly in some
LATEX file, and copy them over. For example, grab the LaTeX_Tutorial.tex itself, get rid of the parts
you don’t need, and use the rest. That’s what it’s there for! :)

2 Running LATEX

This tutorial assumes that you are going to run under Eniac, via the command line. There are packages
available for Windows and OS X, but you will need to install and learn how to use them yourself; there isn’t
enough space in this tutorial to explain how to install and use packages on other systems.

Take the LATEX version of this file and put it somewhere convenient that you have write access to that
is reachable from the Eniac. Note that LATEX generates a lot of intermediate files, so if you want to be able
to quickly get rid of everything, it is probably best to create an new, empty directory somewhere, and run
everything from there.

Log into Eniac, change directories to somewhere convenient, and extract the tarball that contains this
LATEX file and all of its associated files. Note that the tarball has had all of the temporary files removed; if
you plan on using version control, now is a good time to note what files you have, and to compare it to the
files you will have after LATEX is done running. Whatever gets generated by LATEX can be safely disposed of
because LATEX will regenerate it later on. For the time being, I’m going to assume that you have a directory
named LaTeX Tutorial that you are operating out of. If you just untar the tarball, it should create that
directory for you.

1. Change directories to the LaTeX Tutorial directory.

2. Run latex LaTeX Tutorial.tex from the command line. This will generate many files, including a
.dvi file. .dvi files are device independent files. They are like the great-granddaddy of PDF, PS,
EPS, etc. Once a LATEX file has been compiled into a .dvi file, other tools can convert it into any
number of other formats, including what we’re going to do, which is PDF.

3. Run dvipdf LaTeX Tutorial.dvi. This will generate the file LaTeX Tutorial.pdf. If you’re curious
as to what other output forms you can render to, take a look in /user/bin for programs starting with
dvi. There are also a couple of LATEX programs that you might want to look at as well. They start
with the name latex.

2

http://www.amazon.com/LaTeX-Document-Preparation-System-2nd/dp/0201529831
http://www.amazon.com/LaTeX-Companion-Techniques-Computer-Typesetting/dp/0201362996
http://www.latex-project.org/
http://www.tug.org/
http://www.tug.org/ctan.html

A note about references, table of contents, indices, etc. In section 7 I’ll tell you about the \label{}

and \ref{} commands. These create links within a document, including automatically generated section
numbering. The problem is how these references are generated; it requires two passes of LATEX to get them
right. If you see that everywhere you’ve used the \ref{} command you have ?? instead of actual numbers
& sections, or if you’re missing your table of contents & index, just run LATEX again. It should fix all the
references then. Also, if you type in enough text that some items move to a different page, or if you reorder
your sections, you will need to run the latex command twice.

A final note about running LATEX. Given enough time and hacking, your LATEX file can get large, and
you can end up with a lot of auxiliary files, especially if you use anything like GraphViz or other tools
to automatically generate images. Create a Makefile, and use make. This will keep the headaches to a
minimum, and it makes it easy to clean your files when you just want to get rid of all the dribbled bits that
LATEX leaves behind. It will also allow you to run the latex command twice as mentioned above.

3 Basics

LATEX uses a model similar to HTML + CSS; you mark up your document, delimiting blocks of text with
special markup, which are then interpreted by LATEX along with some style files to determine how to render
your document. There are a number of built-in styles, and you can create your own. Since this is supposed
to be a brief tutorial, we won’t go into how to write your own style files. The important take-home point is
that what you type in your document doesn’t look anything like what will be finally outputted. Get used
to writing some, and rendering some.

You can break up your document into chapters, sections, subsections, subsubsections. Note that you will
only have access to the chapter command if your document is a report. If it is an article, you’ll have access
to everything except the chapter command. As you might guess, chapters contain sections, which contain
subsections, etc. The commands always fall into two types; one which generates a chapter or section number,
and one which doesn’t. The difference is the * character; unnumbered sections have it, numbered ones don’t.
In addition, each of the commands accepts an argument that is the name you want to give the sections.
As an example, I’m going to create several of these, which will generate a whole bunch of dummy sections.
Read LaTeX Tutorial.tex to see how these work; reading the PDF file will make no sense what-so-ever for
these examples (everything in §4).

4 This is the start of a numbered section

4.1 This is the start of a numbered subsection

4.1.1 This is the start of a numbered subsubsection

This is the start of an unnumbered section

This is the start of an unnumbered subsection

This is the start of an unnumbered subsubsection

Sections do not have an \end{} command; instead, a section will continue until the next sectioning command.
Paragraphs are delimited by leaving a blank line between two blocks of text. If you don’t understand

what I mean, start reading the LaTeX Tutorial.tex file now.
Notice that unnumbered sections (ones that have a ‘*’ character) will not show up in the table of contents.

If you look at the unnumbered sections above, and look for them in the table of contents, you’ll see what I
mean.

5 Environments

Unlike many programming languages, LATEX is not context-free. You can tell it to switch modes of behavior,
which change what different characters and commands mean at a moment’s notice. These modes are called

3

http://www.graphviz.org/

environments. Some environments are built-in, while others are supplied by packages that you include
via the \usepackage command. When you change to a new environment, you’re getting a whole new set
of rules, options, etc., that you can play with. As a simple example, you can write extremely complicated
mathematical equations using LATEX, but to do so, you must be in the math environment. Environments
that come in from other packages are usually well behaved and use the \begin{} and \end{} markers. You
put the name of the environment in the braces (always making sure to match a \begin{} with an \end{}!)
to switch to that environment’s mode.

A few useful built-in environments are below.

5.1 List making environments

There are 3 basic ways of making lists: itemize, enumerate, and description. The syntax is very simple;
the only thing you can adjust is the \item command’s optional argument. Below are some examples you
can look at. Note that you’ll only understand what is going on if you read the LaTeX Tutorial.tex file.

• blah blah blah

+ More blah blah blah

• – blah

– more blah

1. blah blah blah

+ More blah blah blah

2. (a) blah

(b) more blah

Description blah blah blah

Another description More blah blah blah

stuff 1. blah

2. more blah

5.2 Verbatim environment

There are two ways of providing verbatim text (text that LATEX will display without trying to interpret
any of the characters inside). The first is via \verb. This is generally used inline, and has the odd syntax
that only the first and last character have to match. That is, you can use \verb=Foobar=, \verb*Foobar*,
\verb!Foobar!, or any other non-alpha-numeric character you want to use. The only requirement is that
you cannot use that character inside the verbatim part. That is, \verb=== won’t work. This also means
that \verb{=} won’t work, but \verb{={ will.

The second way is via the verbatim environment. This is extremely useful for when you want to put in
a code listing, or something else where you don’t want LATEX to mess with the formatting. When you open
the environment with \begin{verbatim}, the only way to close the environment is via \end{verbatim}.
Anything else will ignored. So:

Here are a bunch of random characters:

!@#$%^&*()_+=-[]{}\|’";:/?.>,<

This line started with some spaces. \LaTeX\ preserved them (and it ignored the \LaTeX\ command!)

Note that Latex won’t wrap lines for you automatically. If you’re not careful, you’ll

run all the way off the side of the page.

There are 4 tabs to the left of this line

4

One tricky part of the verbatim environment is how it handles tabs. Most programs see tabs as either
being 4 or 8 spaces; LATEX defines them as having 0 width. So the line above, There are 4 tabs to the

left of this line actually does have 4 tabs; LATEX has just reduced them to 0. The safest way to include
code is to make sure that you’ve replaced all tabs with spaces. Most text editors will let you choose if you
want to emulate tabs with spaces, so this shouldn’t be a problem.

5.3 Tabular environment

Below is an example of the tabular environment. This is the environment you’ll be wanting if you want to
make tables. The syntax is quite simple.

The vertical pipe characters within the {|c|c|} create vertical lines. The letter c tells LATEX that you
want whatever is in the columns to be centered. If you used the letters l or r instead, then that column
would be left or right justified instead. The command \hline puts in the horizontal line. You can remove
any | or \hline you see, and the table will be fine (just without that particular line).

The one trick to remember is how LATEX determines the shape of the table; for each c, l, or r it sees,
it expects there to be that many columns of data. The data is separated by a & character. If your table’s
columns don’t match the number of c, l, or r characters, then you’ll get an error. A line is ended with \\.
Again, forgetting that makes a mess.

Some random text And some more random text
Some more text and I’m tired of random text, I want to go home.

5.4 Math environment

Unfortunately, the math environment is not a well-behaved environment. There are at least 5 different ways
of writing math equations. Here are the 3 most useful:

5.4.1 $ environment

You can write equations inline like this: a = n43ε by putting the equation you want between $ signs. The
equation will not be numbered. If the equation is large, it will make a mess of your lines, so this should be
for small, simple equations only.

5.4.2 equation and equation* environments

If you want to break your equation out, then the equation and equation* environments are your best
choice. The former will have an equation number, while the later will not. Here is an example of each:

n =
∞6√∞

6

(1)

n =
∞6√∞

6

The advantage of the numbered equations is the the builtin \ref{} command can refer to the equation
by its number, while the unnumbered equation will be referred to by it’s enclosing section. For example, the
first equation is Equation 1, while the second is Equation 5.4.2.

5.4.3 align and align* environments

align and align* are also math environments, except that they have the ability to format their equations
into nicely formatted columns and tables. The alignment method is simple; each line must have the same
number of & characters, and those characters are used to align the equations with one another. \\ is used
at the end of each line signal that the next line is a different equation. Here is an example. I’m not going to
show you the align* environment, it is analogous to the equation* environment in how it isn’t numbered.

5

4 = 2 + 2 (2)

E = mc2 (3)

A long variable name = ε ∗∆ (4)

5.4.4 Some math commands

Note that there are a lot of math commands; it is best to look them up on the web. Fig 1 has some of the
symbols you can use. Read the LaTeX_Tutorial.tex file to see how you use them. Remember that the $ is
just there to put LATEX in math mode; if you’re already in math mode, you don’t need $.

α β γ δ ε
ε ζ η θ ϑ
ι κ λ µ ν
ξ π $ ρ %
σ ς τ υ φ
ϕ χ ψ ω

(a) Lower-case Greek

Γ ∆ Θ Λ Ξ
Π Σ Υ Φ Ψ
Ω

(b) Upper-case Greek

± ∓ × ÷ ∗
? ◦ • · q
∩ ∪] u t
∨ ∧ \ o �
4 5 / . ⊕
	 ⊗ � � ©
† ‡

(c) Binary operation symbols

≤ ≥ ≡ |= ≺
� ∼ ⊥ � �
' | � � �
‖ ⊂ ⊃ ≈ ./
⊆ ⊇ ∼= 6= ^
v w .

= _ ∈
3 /∈ ∝ ` a

(d) Binary relation symbols

← ←− ⇐ ⇐=
→ −→ ⇒ =⇒
↔ ←→ ⇔ ⇐⇒
7→ 7−→ ←↩ ↪→
↼ ↽ ⇀ ⇁

 ; ↑ ⇑
↓ ⇓ l m
↗ ↘ ↙ ↖

(e) Arrows

ℵ ′ ∀ ∞ ~
∅ ∃ 2 3 ı
∇ ¬ 

√
[

4 ` > \ ♣
℘ ⊥] ♦ <
‖ \ ♥ = ∠
∂ ♠ 0

(f) Misc. symbols

∑ ⋂ ⊙ ∏ ⋃⊗ ∐ ⊔ ⊕ ∫∨ ⊎ ∮ ∧
(g) Variable size symbols

arccos cos csc exp ker lim sup min sinh
arcsin cosh deg gcd lg ln Pr sup
arctan cot det hom lim log sec tan

arg coth dim inf lim inf max sin tanh

(h) Log-like functions

() ↑
[] ↓
{ } l
b c ⇑
d e ⇓
〈 〉 m
/ \
| ‖

(i) Delimiters

Figure 1: Symbols

Superscripts are made via the ^{} command, and subscripts are made via _{}. Fractions are made
using the \frac{}{} command, square roots are made via the \sqrt command, and dots are made with the
\ldots, \cdots, \vdots, and \ddots commands.

See Eq 5 for an example.

ni =
ji + ksi

a0 + a1 + · · ·+ an
∗
√
π × ı (5)

The symbols in Fig. 1i are unusual in that the size of the symbols depend on what is ‘inside’ of them.
You control what is ‘inside’ via the \left and \right commands, which must occur in matched pairs. The

6

way to use them is to put the \left or \right command immediately before the symbol you’re using. See
Eq. 6. You can also use a dot, as in \left. or \right. The dot won’t show up in the output, but it allows
you to put in the \left and \right without LATEX complaining about a missing \left or \right. This can
be handy if you want to make something like Eq. 7

A =

 1 2 3
4 5 6
7 8 9

 (6)

B =


1 2 · · ·
4 5 · · ·
...

...
. . .

(7)

C =

n∑
i=1

(
Θn

Λn

)
(8)

6 Figures and graphics

While pure math is great for many things, pictures aren’t one of them. To create a picture, you can use the
\includegraphics{} command as follows:

\begin{figure}[htb]

\centering

\resizebox{1in}{!}{\includegraphics{FlowChart}}

\caption{Figure caption}

\label{FlowChart1}

\end{figure}

Which yields the figure in Fig. 2. Note that the figure environment is one that I’m not going to explain;
the only thing you really need to know is that it forces whatever is inside of it to appear on one page, which
is exactly what you want with a picture. If you’re interested, search on the web for it, otherwise, just copy
the LATEX above, and replace what you need.

Start
debugging

Cry, and curse
your fate

Start GDB

Find & fix
bug? No

Stop

Yes

Celebrate

All bugs
fixed?No

Yes

Figure 2: Debugging reality

7

You can group multiple pictures together using the \subfloat{} command as in Fig 3.

\begin{figure}[htb]

\centering

\subfloat[Left debugging]

{

\resizebox{1in}{!}{\includegraphics{FlowChart}}

\label{FlowChart2a}

}

\subfloat[Right debugging]

{

\resizebox{1in}{!}{\includegraphics{FlowChart}}

\label{FlowChart2b}

}

\caption{Parallel debugging}

\label{FlowChart2}

\end{figure}

Start
debugging

Cry, and curse
your fate

Start GDB

Find & fix
bug? No

Stop

Yes

Celebrate

All bugs
fixed?No

Yes

(a) Left debugging

Start
debugging

Cry, and curse
your fate

Start GDB

Find & fix
bug? No

Stop

Yes

Celebrate

All bugs
fixed?No

Yes

(b) Right debugging

Figure 3: Parallel debugging

The line \includegraphics{FlowChart} tells LATEX to look for the file named FlowChart in the same
directory as where your LATEX file is. Note that there isn’t a file suffix because at the top of the
LaTeX_Tutorial.tex file, I’ve included the command \DeclareGraphicsExtensions{.eps} (or possibly
\DeclareGraphicsExtensions{.pdf}, if I’ve forgotten to comment out the other line). That command
tells LATEX what the file suffix to search for is.

The \resizebox{1in}{!}{...} part tells LATEX that I want the image to be resized. \resizebox uses
3 arguments; the first is the width you want, the second is the height you want, and the third is the thing
you want resized (which can be objects other than graphics, but it is unlikely you’ll use it for anything else).
The ! in either of the first two arguments means that you want to keep the aspect ratio the same, so your
graphic will shrink in size, but it won’t get distorted.

The \label is described in Section 7. As a general rule of thumb, every figure and every subfloat

should have their own label.
Other arguments are caption text, and getting the figure centered correctly; play with the code to see

what is going on.

8

7 Cross References

To make a reference within a document, you use the \label{} and \ref{} commands. The \label{}

command acts like the anchor for a link, while the \ref{} command tells LATEX to make a link to a particular
anchor. Note that \label{}’s are not exactly like URLs; they will only anchor to the start of a section. If
you go through the LaTeX Tutorial.tex file, you will see many uses of both of the commands. Try moving
them around a bit, and you’ll see where you can put them. You can put any non-special character in for
labels, including spaces. The labels can be as long as you wish, so try to make your labels descriptive, it will
make it easier to find errors.

8 Miscellaneous

The \noindent command right before a paragraph will force the start of the line to be all the way to the
left of the page. Look in the LaTeX Tutorial.tex file for examples of how its used.

8.1 Whitespace

There are a number of ways of adding more space to a line, and there are some ways of forcing LATEX to go
backwards. Here are a few space characters:

\, ‘ ’
\; ‘ ’
‘\ ’ ‘ ’
~ ‘ ’

~ is a non-breaking space character. That means that if you have two words next to each other, but separated
by ~, they will be treated as one word for the purposes of line breaking, justification, etc. The practical
upshot of this is if you have something like a reference like Fig.~\ref{some reference}, you are guaranteed
that the Fig. part and the generated reference number are always stuck together. This is handy if there is
a line break, or a page break as you are guaranteed that you don’t end up with the Fig. on a different line
or page than the reference number.

8.2 Vertical Spacing

You can create a page break via the \pagebreak command. Put it on any line by itself, and the page will
be broken there.

You can make a line break via the \linebreak or \\ commands, and LATEX will try to justify the lines.
\newline simply breaks the line, without trying to justify it.

\bigskip, \medskip, and \smallskip will put space between paragraphs. This can be handy if you
want to space a paragraph away from an equation, or some other object.

9 Errors

LATEX is powerful, but its error messages can range from useful to malignantly misleading. You will get
used to error messages on lines that can’t possibly have errors on them, only to find that the error occurred
somewhere far, far away. The best thing to do is to run LATEX often, and to keep everything under version
control. That way, when something breaks, you can do a quick diff between your old and new versions,
which should give you an idea as to where the errors could be.

Here are some common problems:

• Incorrect or missing reference numbers Try re-running LATEX. LATEX uses a two pass algorithm
to fill in all the reference details. In the first pass, it builds a database of where the \labels{} are,
and in the second pass, it actually puts those references into the \ref{}s. If that fails, make absolutely
sure that your references and labels match exactly. That usually solves most problems.

9

• Complaints about a missing $ You tried to use something that only has meaning inside of the
math mode outside of it. The most common cause of this is the ‘ ’ character. If you forget to escape
it with a \, then it will cause you a headache. Note that the warning is generally on the wrong line,
sometimes in the wrong part of your paper all together. The easiest way to fix this is to use your
favorite search utility to look for any unescaped ‘ ’ characters, and then to try again.

This can also happen if you accidentally put a $ inside of another math mode like so:

\begin{equation}

$E = mc^{2}$

\end{equation}

Double check all your math environments to see if you’ve forgotten anything, or gotten overzealous
and added extra environment markers.

• ANY complaint that occurs beyond the end of the document Check to make sure that every
open brace or bracket is matched with a close brace or bracket. Also make sure that every \left

is matched with a \right and that every \begin{} is matched with an \end{}. Inevitably, there is
something left open that needs to be properly closed off. Also make sure that everything is properly
nested; incorrect nesting will cause you headaches as well. Finding it will likely be a hassle because
LATEX won’t tell you where your error actually occurred, so it will involved some detective work. Good
luck, you’re going to need it!

• I fixed the bug, why doesn’t it work?!?!? Throw away all of the intermediate files that LATEX
generated. Those intermediate files are LATEX’s cached state, and if a prior error has mangled that
state somehow, LATEX usually won’t be able to recover from it. By throwing away those files, you’ll
force LATEX to rebuild from a clean state.

10

	Resources
	Running LaTeX
	Basics
	This is the start of a numbered section
	This is the start of a numbered subsection
	This is the start of a numbered subsubsection

	Environments
	List making environments
	Verbatim environment
	Tabular environment
	Math environment
	$ environment
	equation and equation* environments
	align and align* environments
	Some math commands

	Figures and graphics
	Cross References
	Miscellaneous
	Whitespace
	Vertical Spacing

	Errors

