
Exact VC-Dimension of Boolean Monomials�Thomas Natschl�ager Michael SchmittInstitute for Theoretical Computer ScienceTechnische Universit�at GrazKlosterwiesgasse 32/2A-8010 Graz, Austriaftnatschl,mschmittg@igi.tu-graz.ac.at
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1 IntroductionThe Vapnik-Chervonenkis dimension VC-dim(C) of a collection C of subsets of aset X is de�ned as the maximum cardinality of any set S � X that is shatteredby C. A set S is shattered by C if for every subset T of S there exists a C 2 Csuch that T = S \ C.The VC-dimension of a class F of functions f : X ! f0; 1g is de�ned by iden-tifying each element f 2 F with the set fx 2 X : f(x) = 1g. Thus VC-dim(F)is the maximum cardinality of any set S � X for which F induces all functionsg : S ! f0; 1g.The Vapnik-Chervonenkis dimension gives almost tight bounds for the numberof examples required for learning in Valiant's PAC-model [5]. For a detaileddescription we refer the reader to the article of Blumer et al. [2] and to the booksof Anthony and Biggs [1] and Natarajan [4].In this paper we investigate the VC-dimension of Boolean monomials. Theclass MONOMIALSn is the set of all conjunctions of literals over the variablesfx1; : : : ; xng, including the constant functions 0 and 1. A monomial is calledmonotone if it does not contain negations. The corresponding class is denotedby MONOTONE-MONOMIALSn. We also include the constant functions 0 and1 in the class MONOTONE-MONOMIALSn.The upper bound (log 3)n for VC-dim(MONOMIALSn) has been given byAnthony and Biggs [1, p. 76] based on the familiar relationship VC-dim(F) �log jFj for �nite F .1 Here, log denotes the logarithm to base 2. A lower boundof n has been known for quite a while [3]. The latter proof in fact uses monotonemonomials only, hence VC-dim(MONOTONE-MONOMIALSn) � n.In the following we show that n is also an upper bound even for the classMONOMIALSn for n � 2. Thus, the VC-dimension of monomials is determinedexactly. Furthermore, it follows that adding negations to monotone monomialsdoes not increase the VC-dimension, except for n = 1. The results are easilytransferred to the dual class of Boolean clauses.2 The upper boundTheorem 2.1 VC-dim(MONOMIALSn) � n for all n � 2.Proof. Let S � f0; 1gn be an arbitrary set of cardinality n+1 and assume thatit can be shattered by MONOMIALSn. We �x an enumeration u(1); : : : ; u(n+1) ofthe elements of S and de�ne Si := S n fu(i)g for i = 1; : : : ; n + 1. The de�nitionof shattering implies in particular that for each Si there exists a monomial mi 2MONOMIALSn such that Si = S \mi. Thus, for i; j = 1; : : : ; n+ 11The authors of [1] disregard the function 0 in their de�nition of monomials (see p. 12).Thus, the bound log(3n + 1) is more advisable in our case.2



mi is false on u(j) i� i = j: (1)Therefore, each u(i) must contain a component u(i)h(i) and each mi must containa literal lk(i) such that lk(i) is false on u(i)h(i). Among the literals lk(1); : : : ; lk(n+1) atleast one variable occurs twice. Without loss of generality we assume that lk(1)and lk(2) both contain the same variable. Then there are two cases: lk(1) = lk(2)and lk(1) = :lk(2).If lk(1) = lk(2) then lk(1) is false on both u(1)h(1) and u(2)h(2). But then m1 is falseon both u(1) and u(2) in contradiction to (1).If lk(1) = :lk(2) then consider u(3). (Recall that n � 2.) Either lk(1) or lk(2)is false on u(3). Consequently, either m1 is false on u(3) or m2 is false on u(3) incontradiction to (1). 2It is easy to see that the set f0; 1g can be shattered by MONOMIALS1.Therefore, we have VC-dim(MONOMIALS1) = 2.3 ConclusionsTogether with the lower bound established by Ehrenfeucht et al. [3] we obtainprecise values for the VC-dimension of monomials:Corollary 3.1 VC-dim(MONOMIALSn) = ( n if n � 22 if n = 1:The cited lower bound result also holds for monotone monomials. The setf0; 1g cannot be shattered by MONOTONE-MONOMIALS1 because this classcontains only three functions f0,1,xg. Therefore, the VC-dimensions of bothclasses are equal except for n = 1.Corollary 3.2 VC-dim(MONOTONE-MONOMIALSn) = n for all n.Finally, we state that the results are transferable to MONOTONE-CLAUSESnand CLAUSESn by duality. A (monotone) clause is a disjunction of (non-negated)literals.Corollary 3.3 VC-dim(CLAUSESn) = ( n if n � 22 if n = 1and VC-dim(MONOTONE-CLAUSESn) = n for all n.
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