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Abstract

We show that the Vapnik-Chervonenkis dimension of Boolean mono-
mials over n variables is at most n for all n > 2. It follows that the
VC-dimension is determined exactly and is, except for n = 1, equal to the
VC-dimension of the proper subclass of monotone monomials.
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1 Introduction

The Vapnik-Chervonenkis dimension VC-dim(C) of a collection C of subsets of a
set X is defined as the maximum cardinality of any set S C X that is shattered
by C. A set S is shattered by C if for every subset T of S there exists a C € C
such that T'=SnC.

The VC-dimension of a class F of functions f : X — {0, 1} is defined by iden-
tifying each element f € F with the set {x € X : f(z) = 1}. Thus VC-dim(F)
is the maximum cardinality of any set S C X for which F induces all functions
g:S—{0,1}.

The Vapnik-Chervonenkis dimension gives almost tight bounds for the number
of examples required for learning in Valiant’s PAC-model [5]. For a detailed
description we refer the reader to the article of Blumer et al. [2] and to the books
of Anthony and Biggs [1] and Natarajan [4].

In this paper we investigate the VC-dimension of Boolean monomials. The
class MONOMIALS,, is the set of all conjunctions of literals over the variables
{z1,...,2,}, including the constant functions 0 and 1. A monomial is called
monotone if it does not contain negations. The corresponding class is denoted
by MONOTONE-MONOMIALS,,. We also include the constant functions 0 and
1 in the class MONOTONE-MONOMIALS,,.

The upper bound (log3)n for VC-dim(MONOMIALS,,) has been given by
Anthony and Biggs [1, p. 76] based on the familiar relationship VC-dim(F) <
log | F| for finite F.! Here, log denotes the logarithm to base 2. A lower bound
of n has been known for quite a while [3]. The latter proof in fact uses monotone
monomials only, hence VC-dim(MONOTONE-MONOMIALS,,) > n.

In the following we show that n is also an upper bound even for the class
MONOMIALS,, for n > 2. Thus, the VC-dimension of monomials is determined
exactly. Furthermore, it follows that adding negations to monotone monomials
does not increase the VC-dimension, except for n = 1. The results are easily
transferred to the dual class of Boolean clauses.

2 The upper bound
Theorem 2.1 VC-dim( MONOMIALS,) < n for all n > 2.

Proof. Let S C {0,1}" be an arbitrary set of cardinality n+1 and assume that
it can be shattered by MONOMIALS,,. We fix an enumeration u(", ..., v+ of
the elements of S and define S; := S\ {u?} fori = 1,...,n + 1. The definition
of shattering implies in particular that for each S; there exists a monomial m; €
MONOMIALS,, such that S; =S Nm;. Thus, fori,j=1,...,n+1

'The authors of [1] disregard the function O in their definition of monomials (see p. 12).
Thus, the bound log(3™ + 1) is more advisable in our case.



m; s false on  u(V) ifft =17 (1)

Therefore, each () must contain a component 11,51()2.) and each m; must contain

a literal [;(;) such that [ is false on ugj()i). Among the literals Iy, ..., lym41) at
least one variable occurs twice. Without loss of generality we assume that [
and [y(2) both contain the same variable. Then there are two cases: [y1) = lx()
and lk(l) = ﬁlk(z).

If ly(1)y = lk(2) then [y is false on both “21()1) and uf&) But then m; is false
on both «™" and u(® in contradiction to (1).

If lp(1) = —lk@) then consider u®. (Recall that n > 2.) Either ly) or Iy
is false on u®®. Consequently, either m; is false on u® or my, is false on u® in
contradiction to (1). O

It is easy to see that the set {0,1} can be shattered by MONOMIALS;.
Therefore, we have VC-dim(MONOMIALS;) = 2.

3 Conclusions

Together with the lower bound established by Ehrenfeucht et al. [3] we obtain
precise values for the VC-dimension of monomials:

n if n>2

Corollary 3.1 VC-dim( MONOMIALS,) = { 9 if nm—1

The cited lower bound result also holds for monotone monomials. The set
{0,1} cannot be shattered by MONOTONE-MONOMIALS; because this class
contains only three functions {0,1,2}. Therefore, the VC-dimensions of both
classes are equal except for n = 1.

Corollary 3.2 VC-dim( MONOTONE-MONOMIALS,) = n for all n.

Finally, we state that the results are transferable to MONOTONE-CLAUSES,,
and CLAUSES,, by duality. A (monotone) clause is a disjunction of (non-negated)
literals.

Corollary 3.3 VC-dim(CLAUSES,) = { ;L ZZ Z%f

and VC-dim( MONOTONE-CLAUSES,) = n for all n.
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