The Dinosaur Planet Approach to the Netflix Prize

David Lin* Lester Mackey** David Weiss***

*JP Morgan Stanley, **University of California, Berkeley, ***University of Pennsylvania

November 18, 2008

ヘロト 人間 ト ヘヨト ヘヨト

æ

Outline

Introduction

2 Algorithms

Clustering Restricted Boltzmann Machines K-Nearest Neighbors Matrix Factorization Co-Training

3 Model Blending

Regression Pairwise Interactions

4 Conclusions

Summary of Results References

→ Ξ → < Ξ →</p>

Outline

1 Introduction

2 Algorithms

Clustering Restricted Boltzmann Machines K-Nearest Neighbors Matrix Factorization Co-Training

3 Model Blending

Regression Pairwise Interactions

4 Conclusions

Summary of Results References

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

The Netflix Prize

 Netflix recommends movies to customers based on their preferences

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The Netflix Prize

- Cinematch = Netflix movie recommender system
 - Collaborative filtering: patterns in the way users rate movies
 - Extract user tastes from past ratings
 - Predict other "Movies You'll ♡"
- Netflix Prize Challenge, Oct. 2, 2006
 - Beat Netflix recommender system, using Netflix data \rightarrow win \$1 million.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Netflix Data

- Training set (TS)
 - 100 million examples (movie id, user id, date, rating)
 - 17,770 distinct movies
 - 480,189 distinct users
- Qualifying set (QS)
 - 2.8 million examples (movie id, user id, date)
 - Actual ratings withheld
 - Contains latest ratings of each user
 - Distribution fundamentally different from training set's!
- Probe set (PS)
 - 1.4 million examples (movie id, user id, date, rating)
 - Subset of training set
 - Same distribution as qualifying set

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Netflix Data

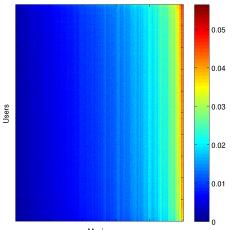
Key characteristics

- Largest publicly available dataset of its kind
- High sparsity
 - 17,770 x 480,189 \approx 8.5 billion user-movie pairs
 - Only 1.18% of ratings are known
- No demographic data, just ratings
- Training and test sets have different distributions
 - Infrequent raters appear as often as frequent raters in QS

(雪) (ヨ) (ヨ)

Introduction Algorithms Model Blending Conclusions

The Netflix Data

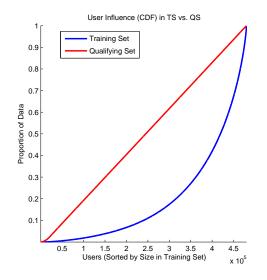


Percentage of Observed Ratings in the Training Set

Movies

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

The Netflix Data



▶ < Ξ >

ъ

Evaluation Criteria

- Submit predictions of QS ratings to oracle (once per day)
- Score = root mean squared error (RMSE)

$$\sqrt{\frac{1}{|QS|} \sum_{(u,m) \in QS} (pred_{(u,m)} - actual_{(u,m)})^2 }$$

- Cinematch QS RMSE: 0.9514
- 10% improvement (0.8563) \implies Grand Prize (\$1 million)
- 1% improvement each year \implies Progress Prize (\$50,000)
- Predicting error
 - Withhold probe set from training set
 - Use PS RMSE to predict QS RMSE
 - Cinematch PS RMSE: 0.9474

・ 同 ト ・ ヨ ト ・ ヨ ト …

Brief Milestones

• October, 2006: Team Dinosaur Planet founded

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Brief Milestones

- October, 2006: Team Dinosaur Planet founded
- Spring, 2007: DP enters "Top 10" on the leaderboard

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Brief Milestones

- October, 2006: Team Dinosaur Planet founded
- Spring, 2007: DP enters "Top 10" on the leaderboard
- Early September, 2007: DP takes first place for 1 hour

< 回 > < 回 > < 回 > -

Brief Milestones

- October, 2006: Team Dinosaur Planet founded
- Spring, 2007: DP enters "Top 10" on the leaderboard
- Early September, 2007: DP takes first place for 1 hour
- Late September, 2007: DP teams up with Team Gravity

・ 同 ト ・ ヨ ト ・ ヨ ト

Brief Milestones

- October, 2006: Team Dinosaur Planet founded
- Spring, 2007: DP enters "Top 10" on the leaderboard
- Early September, 2007: DP takes first place for 1 hour
- Late September, 2007: DP teams up with Team Gravity
- October 1, 2007: DP+Gravity retakes first place

Brief Milestones

- October, 2006: Team Dinosaur Planet founded
- Spring, 2007: DP enters "Top 10" on the leaderboard
- Early September, 2007: DP takes first place for 1 hour
- Late September, 2007: DP teams up with Team Gravity
- October 1, 2007: DP+Gravity retakes first place
- October 2, 2007: 2nd place finish in Progress Prize

Outline

Introduction

2 Algorithms

Clustering Restricted Boltzmann Machines K-Nearest Neighbors Matrix Factorization Co-Training

3 Model Blending

Regression Pairwise Interactions

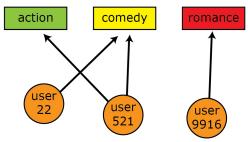
4 Conclusions

Summary of Results References

・ 回 ト ・ ヨ ト ・ ヨ ト

э

• Divide users (or movies) into groups based on similarities



- Use group information to predict user ratings
 - e.g. The average action-lover gives Indiana Jones a 5
- Hard clustering: each user belongs to a single cluster
- Soft or Fuzzy clustering: each user fractionally belongs to all clusters

프 🖌 🛪 프 🕨

Clustering Models

General model

- U users, M movies, K clusters
- Represent user *u* as incomplete ratings vector $r_u \in \mathbb{R}^M$

• e.g. $r_u = (1, 5, ?, ?, 3, ?, 4)$

- Represent each cluster k by a centroid vector $c_k \in \mathbb{R}^M$
 - Typically, ck is average of user vectors in cluster k
- Minimize distance between users and their cluster centers

Hard clustering

- *z_u* := cluster of user *u*
- Minimize: $J(z) = \sum_{u=1}^{U} ||r_u c_{z_u}||_2^2$

Fuzzy clustering

- $z_{u,k}$:= fractional belonging of u to cluster k, $\sum_{k=1}^{K} z_{u,k} = 1$
- Minimize: $J_{\alpha}(z) = \sum_{u=1}^{U} \sum_{k=1}^{K} z_{u,k}^{\alpha} ||r_u c_k||_2^2$

Fuzzy C-Means

Fuzzy C-Means Algorithm (Dunn 1973, Bezdek 1981)

- 1 Choose number of clusters, K
- 2 Randomly assign users to clusters $\rightarrow z^{(0)}$
- 3 At each time step $t \ge 0$, recompute
 - Cluster centers as weighted average of user vecs

$$c_{k}^{(t)} = \frac{\sum_{u=1}^{U} z_{u,k}^{(t)\alpha} r_{u}}{\sum_{u=1}^{U} z_{u,k}^{(t)\alpha}}$$

 User assignments based on distance to cluster centers $Z_{...,k}^{(t+1)} = -----1$

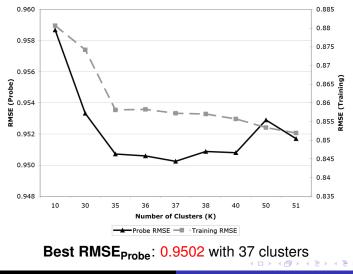
$$\sum_{j=1}^{K} \left(\frac{\left| \left| r_{u} - c_{k}^{(t)} \right| \right|_{2}}{\left| \left| r_{u} - c_{j}^{(t)} \right| \right|_{2}} \right)^{\frac{L}{\alpha - 1}}$$

4 Repeat until assignments don't change (much)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Fuzzy C-Means Results

RMSE vs. Number of Clusters (K)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Fuzzy 3-way clustering

Motivation: Incorporate prior information

 Rating data naturally divide into "positive" {3,4,5} and "negative" {1,2} ratings

Algorithm

- Cluster on positive ratings $\{3,4,5\} \rightarrow E[r_{u,m}|r_{u,m} \ge 3]$
- Cluster on negative ratings $\{1,2\} \rightarrow E[r_{u,m}|r_{u,m} < 3]$
- Compute indicator vectors: $b_{u,m} = \mathbf{1}(r_{u,m} < 3)$
- Cluster on indicators $\rightarrow P(r_{u,m} < 3)$
- Predict

•
$$\mathsf{E}[r_{u,m}] = P(r_{u,m} < 3) * \mathsf{E}[r_{u,m}|r_{u,m} < 3] + P(r_{u,m} \ge 3) * \mathsf{E}[r_{u,m}|r_{u,m} \ge 3]$$

Best RMSE_{Probe}: 0.9499 with (8, 30, 12) clusters

・ 回 ト ・ ヨ ト ・ ヨ ト

Fuzzy 4-way clustering

Motivation: Confront weaknesses of 3-way clustering

- Positive vs. negative threshold is arbitrary
- Some 3-way clustering subproblems ignore subsets of the data

Algorithm

- For each *t* ∈ {2, 3, 4, 5},
 - **1** Compute indicator vectors: $b_{u,m} = I(r_{u,m} < t)$
 - 2 Cluster on indicators $\rightarrow P(r_{u,m} < t)$
- Predict: $E(r_{u,m}) = 5 \sum_{t=2}^{5} P(r_{u,m} < t)$

Best RMSE_{Probe}: 0.9428 with (13, 12, 30, 35) clusters

くロト (過) (目) (日)

Clustering on Errors

Motivation

- Cluster the residuals of clustering predictions
- Ensembles of clusters outperform single clustering

Algorithm

- Initialize preds⁰_u to predictions of any algorithm
- Initialize $s_u^0 = r_u$, the original ratings
- For *t* = 1, ..., *T*
 - **1** Update residuals $s_u^{t+1} = s_u^t preds_u^t$
 - 2 Choose number of clusterings to perform, N_t

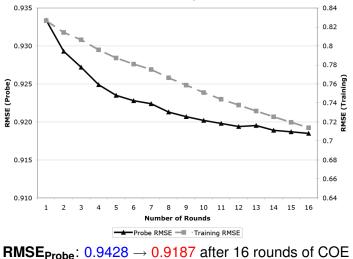
3 For
$$c = 1, ..., N_t$$

Choose number of clusters $K_{t,c}$ in this clustering Cluster vectors s_u^t with $K_{t,c}$ clusters $\rightarrow preds_u^{t,c}$

4 preds^t_u =
$$\frac{1}{N_t} \sum_{c=1}^{N_t} \text{preds}^{t,c}_u$$

Clustering on Error Results

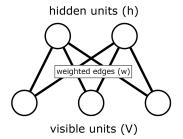
COE RMSE by Round



David Lin*, Lester Mackey**, David Weiss*** The Dinosaur Planet Approach to the Netflix Prize

Restricted Boltzmann Machines - (RBMs)

The Restricted Boltzmann Machine (Smolensky 1986)

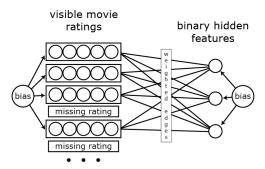


- Bipartite, undirected graphical model
 - Visible layer, V: observed binary data
 - Hidden layer, H: latent binary "'units"'
 - Weight parameters, W: interaction strength

Introduction Algorithms Model Blending Conclusions Clustering RBM KNN MF Co-Training

RBM for Collaborative Filtering

RBM for CF Model (Salakhutdinov et al. 2007)



- Train separate RBM for each user
 - · One visible "'softmax"' unit for each movie rated
 - Allow visible units to take on K (e.g. 5) values
 - Same number of hidden units across all RBMs
 - Weight matrix shared among all RBMs

RBM for Collaborative Filtering

RBM for CF Model (Salakhutdinov et al. 2007)

- User-specific Variables
 - V := binary matrix of user's ratings
 - $v_i^k = 1$ iff user gave rating k to *i*th movie
 - *h* := vector of binary hidden units
- Global Parameters
 - W := weights between visible and hidden units
 - b := hidden unit biases
 - c := visible unit biases
- Conditional distributions

•
$$p(v_i^k = 1 | h, W, b, c) = \frac{\exp(c_i^k + \sum_{j=1}^F h_j W_{ij}^k)}{\sum_{l=1}^K \exp(c_l^l + \sum_{j=1}^F h_j W_{ij}^l)}$$

• $p(h_j = 1 | V, W, b, c) = \sigma(b_j + \sum_{i=1}^m \sum_{k=1}^K v_i^k W_{ij}^k)$

個 とくき とくき と

Learning in the RBM Model

Learning the parameters

- Goal: Choose parameters to maximize likelihood
- Potential Solution: Gradient ascent in log-likelihood
 - Problem 1: Analytical computation ⇒ exponential time
 - Problem 2: Gibbs sampling ⇒ high variance estimates
- Alternative: Gradient ascent in Contrastive Divergence $\Delta W_{ij}^{k} = \epsilon(\langle v_{i}^{k}h_{j} \rangle_{data} - \langle v_{i}^{k}h_{j} \rangle_{T})$ $\Delta c_{i}^{k} = \epsilon(\langle v_{i}^{k} \rangle_{data} - \langle v_{i}^{k} \rangle_{T})$ $\Delta b_{j} = \epsilon(\langle h_{j} \rangle_{data} - \langle h_{j} \rangle_{T})$
 - Compute < . > data terms analytically
 - Approximate < . >_T terms with T rounds of Gibbs sampling

ヘロン 人間 とくほ とくほ とう

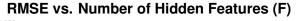
Prediction in the RBM Model

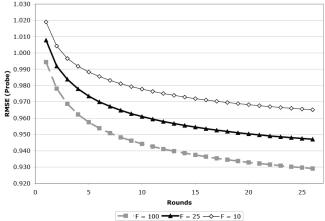
Making Predictions

- Mean field update $\hat{p}_j = p(h_j = 1 | V) = \sigma(b_j + \sum_{i=1}^m \sum_{k=1}^K v_i^k W_{ij}^k)$
- Predict expectation under conditional distribution $p(V|\hat{p}) = \frac{\exp(c_q^k + \sum_{j=1}^F \hat{p}_j W_{qj}^k)}{\sum_{l=1}^K \exp(c_q^l + \sum_{j=1}^F \hat{p}_j W_{qj}^l)}$

(四) (日) (日)

RBM Performance

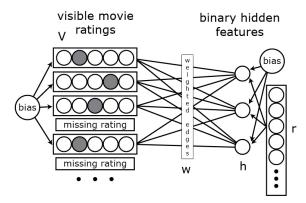




Best RMSE_{Probe}: 0.9104 with 200 hidden features

Conditional RBM

Conditional RBM for CF Model (Salakhutdinov et al. 2007)



Incorporate knowledge of who rated what (e.g. qualifying set)

Best RMSE_{Probe}: 0.9090 with 200 hidden features

Nearest Neighbor Methods

Intuition

Predict r
_{ui} based on user u's rating of "similar" movies to i

Details

- How to define similarity?
 - Inverse sqd. Euclidean distance: $\frac{1}{||r_m r_n||^2}$
 - Cosine similarity: $\frac{\langle r_m, r_n \rangle}{||r_m||||r_n||}$
- How to weight neighbors?
 - · Common approach: use similarities for weighted average:

$$\hat{r}_{ui} = \frac{\sum_{k \in \mathcal{S}_{ui}^{K}} s_{ik} r_{uk}}{\sum_{k \in \mathcal{S}_{uk}^{K}} s_{ik}}$$

• Better approach: fit weights to optimize prediction accuracy

・ 同 ト ・ ヨ ト ・ ヨ ト …

User-specific Least-squares KNN

Algorithm [Bell & Koren, 2007]

- Given a query for user *u* and movie *i*:
 - **1** Find the set S_{ui}^{K} of the K most similar movies to *i* that user *u* has rated.
 - 2 Solve for weights w that minimize the squared error of predictions for *other users* using S^K_{ui} as a basis:

$$\mathbf{w} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{v} \neq u} \left(r_{vi} - \sum_{k \in \mathcal{S}_{ui}^{K}} w_{k} r_{vk} \right)^{2}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• What if other users have not rated each $j \in S_{ui}^{K}$?

Introduction Algorithms Model Blending Conclusions

Clustering RBM KNN MF Co-Training

通 と く ヨ と く ヨ と

KNN Approximation [Bell & Koren, 2007]

- x_{vj} : Rating of user v ($v \neq u$) on movie $j \in S_{ui}^{K}$
- y_v: Rating of user v on target movie i
- Optimal Solution:

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y},$$

However, we can compute:

$$\begin{split} \mathbf{A} &= \mathbf{X}^{\top} \mathbf{X}, \qquad \qquad \mathbf{A}_{jk} \approx \frac{\sum_{v \in \mathcal{O}_{jk}} r_{vk} r_{vj}}{|\mathcal{O}_{jk}|} \\ \mathbf{b} &= \mathbf{X}^{\top} \mathbf{y}, \qquad \qquad \mathbf{b}_{k} \approx \frac{\sum_{v \in \mathcal{O}_{ik}} r_{vi} r_{vk}}{|\mathcal{O}_{ik}|} \end{split}$$

Approximate solution: w ≈ A⁻¹b

・ 同 ト ・ ヨ ト ・ ヨ ト …

KNN Approximation

Implementation Details

- All possible elements of A can be precomputed in parallel
 → prediction is fast
- · Works well at postprocessing other algorithm's predictions
- Best RMSE_{Probe}: 0.9184

Globally Optimized KNN

Motivation

- Fit the item-item similarity weights directly to maximize prediction accuracy
- Incorporate unlabelled data (i.e. viewed but not rated)

"Global KNN" Algorithm [Koren, 2008]

- *R_u* := set of items rated by user *u*,
 A_u := set of items *viewed* by user *u* (unlabelled instance)
- Predict weighted average of *all* data associated with user:

$$\hat{r}_{ui} = \mu + oldsymbol{b}_u + oldsymbol{b}_i + |\mathcal{R}_u|^{-rac{1}{2}} \sum_{j \in \mathcal{R}_u} (r_{uj} - eta_{uj}) oldsymbol{w}_{ij} + |\mathcal{A}_u|^{-rac{1}{2}} \sum_{j \in \mathcal{A}_u} oldsymbol{c}_{ij}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ヘロン 人間 とくほ とくほ とう

Globally Optimized KNN

Implementation Details

- First estimate $\beta_{uj} = \mu + b_u + b_j$ using gradient descent
- Approximate \mathcal{R}_u by a query-specific set $\mathcal{R}_{ui}^k = \mathcal{R}_u \cap S_i^k$
- Solve for W, C using stochastic gradient descent to minimize ∑(r_{ui} − r̂_{ui})² + λ(||W||² + ||C||²)

Performance

- Koren [2008] reports better accuracy than user-specific kNN model when K > 500 and unlabelled data is used
- Preliminary **RMSE**_{Probe}: 0.929 (*K* = 300, no **C**)

・ 同 ト ・ ヨ ト ・ ヨ ト …

"Super-Close" Neighbors

Motivation

- Some sets of items are extremely similar (e.g., T.V. show seasons, mini-series DVDs)
- Explicitly find such sets and correct for them

Finding "super-close" movies

- Simple correlation is not sufficient
- A large intersection size also not good enough
- Pairs must have a large intersection and small union

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

"Super-Close" Neighbors

Algorithm

- For movies *i* and *j*:
 - ρ_{ij} := Pearson correlation between i and j
 - $i\Delta j := \#$ of users who have seen *i* or *j*, but not both
 - Say *i*, *j* are "super-close" if:

$$d_{ij} = rac{i\Delta j}{\min\{n_i, n_j\}} < d^\star,
ho_{ij} >
ho^\star$$

Use heuristic to adjust r̂_{ui} closer to mean rating of any super-close movies

"Super-Close" Neighbors

Some super-close pairs

Corr: 94 - Sesame Street: Sing, Hoot & Howl - Sesame Street: Sing Along Corr: 75 - Sesame Street: Sing. Hoot & Howl - Sesame Street: Cookie Monster's Best Bi Corr: 88 - Sesame Street: Sing, Hoot & Howl - Sesame Street: Happy Healthy Monsters Corr: 94 - Sesame Street: Sing, Hoot ; Howl - Sesame Street: A Celebration of Me. Gro Corr: 80 - Sesame Street: Sing, Hoot & Howl - Sesame Street: Fiesta! Corr: 88 - Sesame Street: Sing, Hoot & Howl - Big Bird in Japan Corr: 88 - Dr. Quinn, Medicine Woman: Season 5 - Dr. Quinn, Medicine Woman: Season 2 Corr: 93 - Dr. Quinn, Medicine Woman: Season 5 - Dr. Quinn, Medicine Woman: Season 4 Corr: 82 - I Love Lucy: Season 5 - I Love Lucy: Season 4 Corr: 85 - I Love Lucy: Season 5 - I Love Lucy: Season 3 Corr: 69 - I Love Lucy: Season 5 - The I Love Lucy 50th Anniversary Special Corr: 71 - Le Petit Soldat - Les Carabiniers Corr: 67 - The Simpsons: Season 1 - The Simpsons: Season 3 Corr: 72 - The Simpsons: Season 1 - The Simpsons: Season 2 Corr: 61 - The Simpsons: Season 1 - The Simpsons: Season 4 Corr: 85 - Frank Sinatra: The Main Event - Frank Sinatra: Ol' Blue Eyes Is Back Corr: 64 - Poirot: The Murder of Roger Ackroyd - Miss Marple: Collection 2 Corr: 77 - Poirot: The Murder of Roger Ackroyd - Poirot: Peril at End House Corr: 78 - Poirot: The Murder of Roger Ackroyd - Poirot: Dumb Witness Corr: 66 - Poirot: The Murder of Roger Ackroyd - Poirot Corr: 72 - Poirot: The Murder of Roger Ackroyd - Poirot: Hercule Poirot's Christmas Corr: 68 - Poirot: The Murder of Roger Ackrovd - Miss Marple Mysteries: A Murder is A Corr: 80 - Poirot: The Murder of Roger Ackrovd - Poirot: One Two Buckle My Shoe Corr: 82 - Poirot: The Murder of Roger Ackrovd - Poirot: Lord Edgware Dies Corr: 81 - Poirot: The Murder of Roger Ackroyd - Poirot: Murder on the Links Corr: 72 - Poirot: The Murder of Roger Ackrowd - Poirot: Death in the Clouds Corr: 76 - Poirot: The Murder of Roger Ackrovd - Poirot: The ABC Murders Corr: 77 - Poirot: The Murder of Roger Ackrovd - Poirot: The Mysterious Affair at Sty Corr: 75 - Poirot: The Murder of Roger Ackrovd - Poirot: Murder in Mesopotamia Corr: 84 - Poirot: The Murder of Roger Ackrovd - Poirot: Hickory Dickory Dock Corr: 93 - Thomas & Friends: Thomas's Snowy Surprise - Thomas & Friends: Hooray for T Corr: 87 - Thomas & Friends: Thomas's Snowy Surprise - Thomas & Friends: The Early Ye Corr: 85 - Thomas & Friends: Thomas's Snowy Surprise - Thomas & Friends: It's Great t

The Dinosaur Planet Approach to the Netflix Prize

イロト イポト イヨト イヨト

Matrix Factorization

Intuition

- Ratings are the sum of interactions between user tastes and movie properties
- Tastes/properties quantified as vectors:

$$\hat{r}_{ui} = \sum_k p_{uk} q_{ik} = \mathbf{p}_u \mathbf{q}_i^ op$$

Model

• Ratings data is a sparse *N* × *M* matrix:

• Factorize **R** as the product of two rank *K* matrices:

$$\mathbf{R} \approx \mathbf{P} \mathbf{Q}^{\top}$$

Learning the MF Model

Minimizing Reconstruction Error

• Many standard MF algorithms minimize squared reconstruction error,

$$\underset{\textbf{P},\textbf{Q}}{\operatorname{argmin}} ||\textbf{R} - \textbf{P}\textbf{Q}^\top||^2$$

- E.g., SVD/PCA, NNMF
- We are only interested in constructing the qualifying set: only 0.03% of **R**!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Learning the MF Model

Practical Solutions

• Minimize regularized squared error on TS examples:

$$L = \sum_{u,i \in \mathcal{T}} \left(r_{ui} - \mathbf{p}_u \mathbf{q}_i^{\top} \right)^2 + \lambda_p \sum_u ||\mathbf{p}_u||^2 + \lambda_q \sum_i ||\mathbf{q}_i||^2$$

- Fit parameters via cross-validation
- Use algorithms that operate per-example (stochastic gradient descent) or per-user/movie (alternating least squares)
- Blithely ignore the problem of local minima and convergence testing

・ 回 ト ・ ヨ ト ・ ヨ ト

Gradient Descent

Algorithm:

- For each record *r_{ui}* in the training set:
 - **1** Calculate residual error: $e \leftarrow r_{ui} \mathbf{p}_u \mathbf{q}_i^\top$
 - 2 Update user factors: $p_{uk} \leftarrow p_{uk} + \eta e(q_{ik} \lambda_p p_{uk})$
 - **3** Update movie factors: $q_{ik} \leftarrow q_{ik} + \eta e(p_{uk} \lambda_q q_{ik})$
- η is learning rate
- Stop after T iterations

In practice:

- Easy to implement, fast
- Improvements: early stopping via validation set, learning rate decay, etc.

Best RMSE_{Probe}: 0.9101

ヘロト ヘアト ヘビト ヘビト

Alternating Least Squares

Algorithm

• Fully observed case: given **R**, initial **P**, **Q**:

1 Update
$$\mathbf{P} \leftarrow \mathbf{RQ}(\mathbf{Q}^{\top}\mathbf{Q} + \lambda_{\rho}\mathbf{I})^{-1}$$

- **2** Update $\mathbf{Q} \leftarrow (\mathbf{P}^{\top}\mathbf{P} + \lambda_{q}\mathbf{I})^{-1}\mathbf{P}^{\top}\mathbf{R}$
- 3 Stop after T iterations

How to efficiently account for missing values?

- For each factor **p**_u:
 - **1** $\mathbf{r}_{(u)} \equiv$ movie ratings of user *u*
 - **2** $\hat{\mathbf{Q}}_{(u)} \equiv$ movie factors for rated movies
 - **3** Update $\mathbf{p}_u \leftarrow \mathbf{r}_{(u)} \mathbf{Q}_{(u)} (\mathbf{Q}_{(u)}^\top \mathbf{Q}_{(u)} + \lambda_p \mathbf{I})^{-1}$
- Use similar strategy to update each **q**_i

(雪) (ヨ) (ヨ)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Implementation Notes

SVD-like implementations

- Basic procedure:
 - 1 Store single array of dataset residuals
 - 2 Learn MF model with K = 1
 - Opdate residuals array, discard factors
 - 4 Repeat
- Decrease T with each factor added to prevent overfitting

Non-negativity constraints (NMF, semi-NMF, etc.)

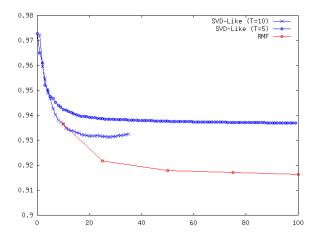
- Computing exact solutions is slow
- After each ALS/Gradient Descent update, rectify P and Q (x : x < 0 ← 0)
- Will induce sparsity!

More Approaches: Gibbs Sampling, 0-Imputation

3

э

Sample Learning Curves



MF for Collaborative Filtering

Intuition - Can we avoid parameterizing users?

- In real-world setting, users drop in/out of database all the time – unrealistic for Netflix to store/update P
- Observe: given arbitrary $\mathbf{Q}_{(u)}$, can solve for p_u
- Goal: build a MF model that never stores an explicit representation for each user

・ 「「」 ・ ・ 三 ト ・ 三 ト ・

MF for Collaborative Filtering

"Asymmetric" Factorization

- Library shelf idea: a user's tastes are the sum of those tastes *indicated by* movies in their library
- Any two users who have viewed exactly the same set of movies are the same

$$\begin{split} \mathbf{p}_u &= \sum_{j \in \mathcal{A}_u} \mathbf{y}_j = \sum_j \mathcal{A}_{uj} \mathbf{y}_j \quad \rightarrow \quad \hat{r}_{ui} = \mathbf{q}_i^\top \sum_{j \in \mathcal{A}_u} \mathbf{y}_j, \\ \mathbf{P} &= \mathbf{A} \mathbf{Y} \quad \rightarrow \quad \mathbf{R} \approx \mathbf{A} \mathbf{Y} \mathbf{Q}^\top \end{split}$$

- A is binary indicator matrix (not used in practice!)
- **Y**, **Q** are both *M* × *K* "movie factors"

Best RMSE_{Probe}: 0.94133

ヘロン 人間 とくほ とくほ とう

Asymmetric Factor Models

"NSVD" - Paterek (2007)

$$\hat{r}_{ui} = \left(|\mathcal{A}_u|^{-rac{1}{2}} \sum_{j \in \mathcal{A}_u} \mathbf{y}_j
ight) q_i^{ op}$$

"SVD++" - Koren (2008)

$$\hat{r}_{ui} = \left(\mathbf{p}_u + |\mathcal{A}_u|^{-\frac{1}{2}} \sum_{j \in \mathcal{A}_u} \mathbf{y}_j \right) \mathbf{q}_i^{\top}$$

Takacs et al. (2008)

$$\hat{r}_{ui} = \mathbf{p}_{u} \mathbf{q}'_{i}^{ op} + |\mathcal{A}_{u}|^{-rac{1}{2}} \sum_{j \in \mathcal{A}_{u}} \mathbf{y}_{j} \mathbf{q}_{i}^{ op}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Co-Training

Intuition

- If two different algorithms are both correct, they should agree on unlabeled data
- "Co-Training" algorithm first proposed by Blum & Mitchell (1998): Enforce agreement on unlabeled data during the training process
- A can help compensate for mistakes by B, vis versa

Integrated Models

- Training global KNN model and "SVD++" simultaneously results in most accurate single model to date [Koren, 2008]
- Can we do even better by regularizing to enforce agreement on Qualifying Set?

ヘロト ヘアト ヘビト ヘビト

Introduction Algorithms Model Blending Conclusions Clustering RBM KNN MF Co-Training

Co-Regularization Experiment

Co-Regularized KNN-MF

1

• Simplified integrated model (no implicit data):

$$\hat{r}_{ui} = \mu + b_u + b_i + |\mathcal{R}_u|^{-\frac{1}{2}} \sum_{j \in \mathcal{R}_u} (r_{uj} - \beta_{uj}) w_{ij} + \mathbf{p}_u \mathbf{q}_i^{\top}$$

Minimize co-regularized objective (gradient descent):

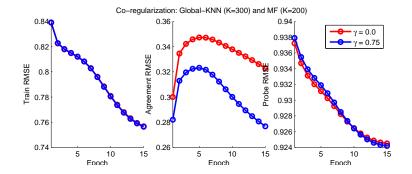
$$L = \sum_{u,i\in\mathcal{TS}} (\hat{r}_{ui} - r_{ui})^{2}$$

+ $\lambda \left[\mu + b_{u} + b_{i} + \sum_{i,j} w_{ij}^{2} + \sum_{u} ||\mathbf{p}_{u}||^{+} \sum_{i} ||\mathbf{q}_{i}||^{2} \right]$
+ $\gamma \left[\sum_{u,i\in\mathcal{QS}} \left(\mathbf{p}_{u} \mathbf{q}_{i}^{\top} - |\mathcal{R}_{u}|^{-\frac{1}{2}} \sum_{j\in\mathcal{R}_{u}} (r_{uj} - \beta_{uj}) w_{ij} \right)^{2} \right]$

David Lin*, Lester Mackey**, David Weiss***

The Dinosaur Planet Approach to the Netflix Prize

Co-Regularization Experiment



- $\gamma = 0.00 \rightarrow \text{RMSE}_{\text{Quiz}} = 0.9258$
- $\gamma = 0.75 \rightarrow \text{RMSE}_{\text{Quiz}} = 0.9254$

Outline

Introduction

2 Algorithms

Clustering Restricted Boltzmann Machines K-Nearest Neighbors Matrix Factorization Co-Training

3 Model Blending

Regression Pairwise Interactions

4 Conclusions

Summary of Results References

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Model Blending

Why combine models?

- Diminishing returns from optimizing a single algorithm
- Different models capture different aspects of the data
- Statistical motivation
 - If X_1, X_2 uncorrelated with equal mean, $Var(\frac{X_1}{2} + \frac{X_2}{2}) = \frac{1}{4}(Var(X_1) + Var(X_2))$
 - Moral: Errors of different algorithms can cancel out

・ 同 ト ・ ヨ ト ・ ヨ ト …

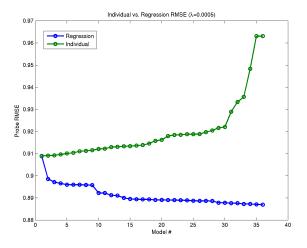
Model Blending

Probe set Ridge Regression

- Linearly combine algorithm predictions
- Let columns of **P** = PS predictions of each algorithm
- Let y = true PS ratings
- Solve for (near) optimal blending coefficients, $\beta \min_{\beta} ||\mathbf{y} \mathbf{P}\beta||^2 + \lambda ||\beta||^2$
- Solution: $\beta = (\mathbf{P}^{\top}\mathbf{P} + \lambda \mathbf{I})^{-1}\mathbf{P}^{\top}\mathbf{y}$
- $\lambda = ridge/regularization parameter$
 - Reduces overfitting
 - Guarantees invertibility

・ 同 ト ・ ヨ ト ・ ヨ ト …

Blending Demonstration



э

э

The search for anything that might help explain the ratings in a different way:

・ 回 ト ・ ヨ ト ・ ヨ ト

The search for anything that might help explain the ratings in a different way:

user size

・ 回 ト ・ ヨ ト ・ ヨ ト

The search for anything that might help explain the ratings in a different way:

- user size
- date

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

The search for anything that might help explain the ratings in a different way:

- user size
- date
- 1/(user size+1)

・ 回 ト ・ ヨ ト ・ ヨ ト

The search for anything that might help explain the ratings in a different way:

- user size
- date
- 1/(user size+1)
- average inverse size of all users that saw the movie

・ 同 ト ・ ヨ ト ・ ヨ ト

The search for anything that might help explain the ratings in a different way:

- user size
- date
- 1/(user size+1)
- average inverse size of all users that saw the movie
- log(1+number of 2 ratings this user has given)

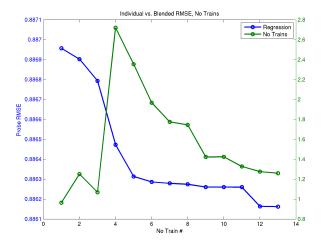
・ 同 ト ・ ヨ ト ・ ヨ ト

(A) (E) (A) (E)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ

No trains in practice



Quantifying Interactions

- Explicitly create new regressors out of interactions between existing ones
 - Polynomial (e.g., $z_n = x_{n,i}x_{n,j}$)
 - Functions (e.g., $z_n = \log(x_n)$)
 - Example: Interacting #1 with all: $0.8870 \rightarrow 0.8864$
 - Example: Interacting #1, #31 with all: $0.8870 \rightarrow 0.8861$

Downsides

- Overfitting
- Dramatically increases runtime! Matrix inversion with all M² interactions = O(M⁶)
- Must make interaction-adding feasible

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Greedy Interaction Selection

Algorithm:

- Precompute $\mathbf{X}^{\top}\mathbf{X}$, PS blended RMSE *r*, and k = M + 1
- For *i*, *j* ∈ {1, . . . , *M*}:
 - **1** Compute interaction $\mathbf{z} = \mathbf{x}_i \cdot \mathbf{x}_j$
 - **2** Compute *k*'th row/column of $\mathbf{X}^{\top}\mathbf{X} = \mathbf{z}^{\top}\mathbf{X}$
 - 3 Compute new regression and record Probe Set RMSE r'
 - 4 If $r' < r \epsilon$, increment k and set $r \leftarrow r'$

In practice

- Adjusting ϵ adjusts the number of accepted interactions
- Still too slow! (36 hours)

くロト (過) (目) (日)

Collapsed Interactions

Modified Algorithm:

- For *i* ∈ {1,...,*M*}:
 - **1** Perform regression on initial regressors and interactions $\{(i, i), (i, i + 1), \dots, (i, M)\}$
 - 2 Compute **y**_i, the optimal blend using regression solution
 - 8 Replace original regressor x_i with new regressor y_i

Benefits

- Feasible: regression with at most 2M predictors
- Probe Set: $0.8841 \rightarrow 0.8809$
- Qual Set: $0.8777 \rightarrow 0.8757$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Bagged Interactions

Algorithm:

- For $s \in \{1, ..., S\}$:
 - 1 Generate bootstrap replicate X^(s), y^(s)
 - 2 Add K random interaction terms to X^(s)
 - **3** Solve for $\beta^{(s)}$ using standard ridge procedure

•
$$\beta^{\text{final}} = \frac{1}{S} \sum_{s} \beta^{(s)}$$

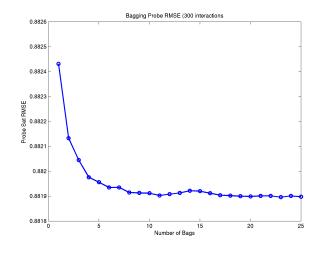
Benefits

- Easy to control run-time complexity
- Bagging helps reduce overfitting (general principle)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regression Interactions

Bagged Interactions



ъ

э

Outline

Introduction

2 Algorithms

Clustering Restricted Boltzmann Machines K-Nearest Neighbors Matrix Factorization Co-Training

3 Model Blending

Regression Pairwise Interactions

4 Conclusions

Summary of Results References

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

Summary of Results

Algorithm Class	Probe	Qual
Clustering	[0.9187-0.9502]	N/A
KNN	0.9184	N/A
MF	[0.9101 - 0.9289]	N/A
RBM	[0.9090 - 0.9104]	N/A
Ensemble of 50 predictors	0.8861	N/A
Ensemble + Correlation	0.8854	N/A
Ensemble + No Trains + Corr	0.8841	0.8777
All + Greedy Interactions	0.8806	0.8756
All + Collapsed Interations	0.8809	0.8757
All + Bagging Interactions	0.8813	0.8753
DP Best + Gravity Best	0.8702	0.8675

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

- R.M. Bell and Y Koren (2007), "Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights", *Proc. IEEE International Conference on Data Mining (ICDM '07)*
- J. C. Bezdek (1981): "Pattern Recognition with Fuzzy Objective Function Algoritms", *Plenum Press*, New York
- J. C. Dunn (1973): "Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters" *Journal* of Cybernetics 3: 32-57
- R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann Machines for collaborative filtering. *Proceedings of the 24th International Conference on Machine Learning*, 2007.
- P. Smolensky. Information processing in dynamical systems: foundations of harmony theory. In D.E. Rumehart and J.L. McClelland, editors, *Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.* McGraw-Hill, New York, 1986.