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1 Introduction

Learning how to induce a machine to learn is a dif-
ficult task. Working with the equations, algorithms,
and theorems is necessary to develop a proficiency
in the language and mechanics of the process, but
there is no substitute for applying this knowledge to
real data. Application of the theory in practice is
paramount to work effectively with the tools. This
report details our experiences while trying to beat
baseline performance (in terms of accuracy) on four
real-world classification tasks: classifying the gender
and age group of web log (blog) excerpts extracted
from the web, and similarly extracting the gender and
age group of color images of celebrity faces.

In partial fulfillment of the project requirements,
this paper also briefly describes our implementation
of: an alternative discriminative method (neural net-
work for images), an instance-based method (k-NN
for blogs and images), and an unsupervised method
(PCA and LDA for blogs and images).

2 Experiments

2.1 Blogs

The blog experiments proceeded through the explo-
ration of papers and topics relevant to text classifica-
tion. Interestingly, we found that topic classification
over standard datasets (e.g. Reuters) was an overar-
ching aspect to most of the papers we reviewed. We
note that that kind of classification and content is
very different from the personal, widely varying writ-
ing quality of blogs we classified in this project; thus,
the results from the algorithms we tried did not tend
to match those in the papers1.

Our first efforts centered around modifying the
baseline Naive Bayes (NB) and support vector ma-
chine (SVM) classifiers to use generated features and
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1Unfortunately, there may also have been serious bugs in

our various implementations, ultimately skewing the results.

dimensionality reduction techniques, described in the
next sections.

2.1.1 Features and Dimensionality Reduc-
tion

We attempted to use a variety of features in our ex-
periments, some driven by simplicity of implemen-
tation (due to time constraints), and others driven
by how well they might discriminate between classes.
The various facilities we developed for this task are
described below.

Spelling Checker: Spell checking over the entire
dictionary was implemented by utilizing the standard
/usr/share/dict/wordsfile found on most Unix-like
systems. It provided indicators of when a token may
have been a proper noun (looking at capitalization),
when it was a number (all digits), and whether it
contained a swear word.

Word Stemming: We implemented word stem-
ming using the Matlab porterStemmer() function
[Lop06]. The stemmer used the results of the spell-
checker and only stemmed properly spelled words;
other words were either mapped to placeholders indi-
cating their type (swear words or numbers) or passed
through, but made lowercase (possible proper nouns).
This process effectively reduced the size of the dictio-
nary from 89182 tokens to around 16000 tokens.

Stop Word Removal: We implemented a small
set of stop words and removed them, but generally
found a reduction in performance across the board.
This technique was generally not used.

Low Document Frequency Term Removal:
Several papers ([JNR98, LS07]) suggested removing
words with low document frequency (i.e. those words
present in less than 3 documents overall). This did
not seem to affect performance positively, and was
also not used.

Principal Component Analysis: In an effort to
reduce dimensionality, we applied PCA to the docu-
ment matrix, using term frequency vectors.

Document Statistics: A set of per-document
statistics were developed to help discriminate be-
tween classes: average word length, average sen-
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tence length, capitalization-after-punctuation fre-
quency, misspellings count, swearword count, number
of hypertext links, frequency of alphanumeric repeti-
tion within words, frequency of slang words, and fre-
quency of punctuation repetition within words. Var-
ious subsets of these statistics were used during de-
velopment.

2.1.2 Other Algorithms and Techniques

An online video lecture by William Cohen at CMU
2006 Autumn School on Machine Learning over Text
and Images [Coh06] discussed Naive Bayes and SVMs
for use in text classification. The lecture discussed
some techniques we hoped to explore (word and
character-based n-grams), but ultimately could not
find the time to implement. We did, however, ex-
plore clustering for feature generation using princi-
pal component analysis (PCA) and latent Dirichlet
allocation (LDA), discussed in [BNJ03]. Using sug-
gestions from the paper, we attempted to integrate
the results into an SVM-based classifier. We achieved
poor accuracy results with both PCA and LDA (not
reported), quite possibly due to minimal class sepa-
ration with the default features (words), and inade-
quate parameter search for the number of LDA top-
ics2.

The Schapire et al. BoosTexter paper [SS00] dis-
cussed his efforts using AdaBoost for text classifica-
tion, specifically using a custom weak learner that
classifies according to single instances of bi-grams.
While we didn’t have time to implement his methods,
we did try boosting decision stumps and short deci-
sion trees on both our document statistics and raw
word features. As an accessible ensemble method,
we examined and implemented bagging [DHS01], a
method to reduce variance by training a set of clas-
sifiers on smaller subsets of the data and then merg-
ing the individual responses into a single response (in
our case, using a majority vote). Yan & Yan’s paper
[YY06] discussed the use of NB for blog gender clas-
sification; although we made attempts to utilize some
of their methods, our results were not as favorable.

Exploring other easy-to-implement methods that
might give good results, we found a paper[GZG09]
describing a simple centroid-based method for classi-
fying text using standard tf-idf3 vectors; the results,
however, were less than stellar, and far different from
the results reported in the paper.

2The processing for LDA took quite a while using the toolkit
at [Ver06].

3Term frequency-Inverse Document Frequency vectors
[BYRN99], a common method for encoding documents for re-
trieval and comparison purposes.

Finally, we implemented an instance-based k-NN
algorithm using an implementation of kd-trees found
on MathWorks [Tag08].

2.2 Faces

Literature related to this project describes multiple
methods for image classification including SVMs, k-
NN (Figure 3a) and neural nets (Figure 2). After
experimenting with all three classifiers, it was de-
termined that the best accuracy was obtained from
SVMs. We deemed the feature generation problem
a larger issue than the classification method, mostly
due to the difficulty in generating meaningful fea-
tures that would allow for separable classes. Thus,
our effort included implementing wavelets, eigenfaces
(Figure 3b), Gabor images, Canny-edge images, bi-
nary mappings, multiple histogram equalization tech-
niques and texture counting. Feature vector sizes
during experimentation ranged from several hundred
per image to over 600,000 per image.

While neural nets and k-NN can be robust to some
amount of noise, the training set must be relatively
separable in order to effectively classify the groups;
in this problem we were faced with noisy images that
included a variety of different lighting and pose con-
ditions; in addition, differences between male and fe-
male individuals can be very subtle even in the eigen-
faces space. On reflection, generating virtual exam-
ples may have been a useful technique here.

We found that not one of the individual feature
generation techniques provided adequate and com-
pact information. Therefore it was determined that
the best course of action was to create an ensemble
of the best candidates and allow them to vote on the
classification. This method, which we refer to as the
“Combined Voting Algorithms”, utilized our top three
performing algorithms and classifies an image based
on majority rule. Due to the multi-class age problem
any tie was simply overruled by the edge detection
algorithm as it proved to have the overall highest ac-
curacy. This method ultimately allows the classifier
to exploit the strengths of the group to overcome the
weakness of any individual algorithm.

2.2.1 Feature Generation Descriptions

Baseline: This is the baseline code and algorithms
provided for the project.

Basic Image Algorithms: Three basic image al-
gorithms were tested: #1 Cropped Color Face, #2
Cropped Gray Face, #3 Full Gray. These algorithms
used the individual pixels as the feature set and are
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either the full image (#3) or the cropped face from
the image (#1 & #2). The cropping technique used
is simply the repaired “Baseline” code.

Contrast Adapting Algorithms: Three types
of contrast adapting algorithms were tested: #1 Full
Gray w/ Equalization, #2 Full Gray w/ Adaptive
Equalization, #3 Full Gray w/ Contrast Spreading:
These algorithms adapted/adjusted the image con-
trast as their name implies. Each algorithm operated
on the full gray-scale image and then scaled the image
to 50x50 pixels. Each individual pixel in the cropped
image was then used as a feature.

Edge Detection Algorithms: Four types of edge
detection algorithms were tested: #1 Gray Sectioned
Edge Detection Counting, #2 Gray Sectioned Edge
Detection (0.1) Counting, #3 Gray Edge Sectioned
Detection Counting w/ Feature Normalization, #4
Gray Sectioned Edge Detection Counting (large sec-
tions), #5 Gray Sectioned Edge Detection Counting
w/ Equalization, #6 Cropped Gray Sectioned Edge
Detection Counting w/ Equalization. Algorithms
#1-5 use full gray-scale images (#6 used the cropped
face); algorithms #5 and #6 are histogram equalized.
“Canny” edge detection was then performed to gen-
erate a binary edge-only image (threshold of 0.1 used
for #2). The image was then sectioned into 25x25
pixel regions (10x10 for algorithms 4,5, and 6). Each
pixel of a region is then compared with its surround-
ing pixels to determine if they create a line. Lines
are classified as one of 8 labels: up, down, left, right,
up & left, up & right, down & left and down & right.
To be considered a line both the center pixel and the
corresponding neighbor pixel must be an edge. For
each region the types of lines are summed and used
as part of the feature vector. Algorithm #3 scaled
individual features to be between zero and one inclu-
sive while the rest were scaled by simply dividing the
entire set of feature vectors by the overall maximum
value.

Local Gabor Binary Mapping w/Class Cen-
ter Connecting Line: This algorithm, described
in [XSL08], gray-scales, histogram equalizes and re-
sizes the image to 52x52 pixels. The face is then
cropped from the image using the baseline cropping
mechanism. Next, a set of forty Gabor-filtered im-
ages are created from the single face images. The
Gabor parameters include every combination of five
scales and eight equal rotations. The local binary
mapping is calculated and the image is then section
into 25x25 pixel regions. Texture types are counted
for each region and then used as part of the feature
vector. Finally, the Center Connecting Line (CCL)
method is used for dimensionality reduction. Fig-
ure 1 illustrates the framework of this method as it

Figure 2: Learning curve for neural net cross-
validation; learning terminated after 85 iterations to
avoid over-fitting.

was applied in the project. Source code for gener-
ating the LBP and Gabor wavelets was downloaded
from [HA09] and [Cha08] respectively and modified
for use in this project.

Wavelets: First four wavelets were used to create
features, yielding sub-bands of 40x40 pixels. While
the wavelets gave good local features, those features
did not generalize across examples which yielded a
poor performance in the nearest neighbor search.
Wavelets on SVMs were tried as well but did not im-
prove accuracy significantly.

Gray-scale vs. Lab eigenfaces: In order to re-
duce the dimensionality of the dataset and to stan-
dardize lighting conditions across images the lumines-
cence component of the Lab color-space was used to
produce features. When compared to the gray-scale
histogram-equalized counterpart the L component di-
minished accuracy and was therefore discarded. Both
color preprocessing routines were applied in conjunc-
tion with SVM, neural networks and k-NN; the first
outperformed the last two algorithms. There are
two possible reasons why the gray-scale histogram-
equalized images outperformed the Lab conversion:
bad normalization across images and the loss of im-
portant high frequency information when omitting
the a and b components.

Combined Voting Algorithms: This algorithm
combined three separately trained classification rou-
tines. Each classification routine used an SVM but
was trained utilizing different feature generation al-
gorithms. We included “Local Gabor Binary Map-
ping w/ Class Center Connecting Line”, “Gray Edge
Sectioned Detection Counting w/ Feature Normaliza-
tion” and “Full Gray” in our winning ensemble. Each
component algorithm then individually classified the
images and the final response was based on majority
rule. In the case of age, when a majority was not
found the output of “Gray Edge Sectioned Detection
Counting w/ Feature Normalization” was utilized as
it provided the highest accuracy rate in cross valida-
tion.

3



Figure 1: The framework of the utilized LGBMP feature extraction method.

(a) k-NN sample pairs; the nearest neigh-
bor is on the left of each pair

(b) First 25 eigenfaces (histogram equal-
ized)

Figure 3: Image feature visualization

3 Results and Analysis

3.1 Blogs

Table 1 describes the representative results across our
various blog experiments. Ultimately, the “tweaked”
form of the original Naive Bayes formulation (1)
proved most reliable in beating the baseline, and in-
cluded the following modifications: to classify gender,
we added the likelihood of above-mean misspellings,
above-mean alphanumeric and punctuation character
repetition, and above-mean presence of swear words,
on top of the likelihood of the individual stemmed
terms; when classifying age, we included the above
components as well as the likelihood of above-mean
sentence length and above-mean sentence capitaliza-
tion. While the results indicate improvement over
the baseline (which was run under the same ten-
fold cross validation), they do not indicate the ac-
tual hold-out test accuracy, which seemed to change
drastically given small modifications in our code (e.g.
adding or removing a single feature). This variance
led us to explore bootstrap aggregation, i.e. bagging
(2), using the tweaked classifier, which showed some
improvement for both age and gender, but which did
not beat the baseline on the hold-out test set.

Next, since [Coh06] and others ([DPHS98, JNR98])

indicated that support vector machines perform quite
well on text categorization, even with high feature
counts, we applied them in several variations: using
the reduced-dimension vectors computed from PCA
and LDA, using the stemmed term count vectors (re-
sults shown in (4)), and using the non-stemmed com-
plete term count vectors. Most results other than
the one shown here were no better than random; ex-
amination of the learned SVM models showed very
high support vector counts, indicative of over-fitting.
We probably spent4 the most time debugging and re-
searching this issue: we first tried expanding the de-
fault parameter search through C values; every test
yielded 100% training accuracy and low (i.e. random)
test accuracy; still over-fitting. We varied the kernels,
trying both the radial basis and linear kernel, as well
as adding an extended grid search over both C and
γ. As suggested by the LIBSVM authors in [LCH04],
we also scaled all vectors to 0-1. Unfortunately, the
best performance we eked out is shown in Table 1.

We then investigated boosting (7); again we were
stymied: the version of AdaBoost [Vez09] we adapted
failed to make progress on one fold after more than 24
hours and was terminated. The most likely cause of
slowness was simply too many attributes (stemmed

4Wasted? Perhaps the term is too strong, but...
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Id Final Algorithm Age Gender

1 Tweaked NB 69.88 67.44

2 Bagging (Tweaked NB) 75%, 3 bags 69.71 67.71

3 Baseline 68.59 67.59

4 SVM (stemmed term count vectors) 61.76 58.41

5 Class Feature Centroid 58.53 54.18

6 5-NN 47.06 50.59

7 AdaBoost (with decision stumps) DNF DNF

Table 1: 10-fold cross validation accuracy across selected algorithms

word terms) for the decision-stump weak learner.
Further investigation, given more time, would include
alternate learners (e.g. those described in [SS00]) as
well as effective application of PCA or LDA.

One of the most surprising results was the poor
performance of the nearest neighbor algorithm (6),
which, on reflection, probably indicates an imple-
mentation bug. Some techniques that may have
improved performance include weighting the results
from each neighbor according to their distance, learn-
ing weights for attributes (so irrelevant attributes
don’t contribute too much), and probably most ef-
fective: a different feature representation.

3.2 Faces

While facial image classification is a widely re-
searched and well-published area, it appears that
many of the published techniques are specifically
tuned to very narrow tasks or types of input data (e.g.
assumption of straight face alignment, or the use of
controlled lighting and background color). This be-
came apparent over the course of the project as tech-
niques such as eigenfaces, Gabor filtering and edge
detection proved to result in less than 80% accuracy
when the published papers report accuracies around
95%. Further evaluation showed that many of these
algorithms pruned images that had distinctive facial
expressions, non-standard backgrounds, or partially
rotated orientations.

The data provided in Table 2 shows the training
and testing accuracies given the various algorithms.
Note that the data marked with an asterisk (*) was
obtained from a single fold cross validation run using
80% of the data for testing and 20% for training. This
algorithm took several hours to run and was omitted
from the 5-fold cross validation routine. It’s worth-
while to observe that the results are all within a very
small range of each other and some variation may
be attributed to noise. It should also be noted that
several of the algorithms generated results with large
variance over the folds and were generally considered

unstable.

4 Conclusion

This project impressed on us the real life difficul-
ties (and joys) of applying machine learning tech-
niques. Each component: feature selection, informa-
tion compression/generalization, limitations of hard-
ware (speed/memory), data selection/pruning and
testing/validation techniques has an important role
and can make the difference in whether an algorithm
is effective and informative or simply wastes CPU cy-
cles. Despite the challenges of implementing the clas-
sifiers, we did find that machine learning can work
(with practice) and produce real, usable results.
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