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Group name: Something naïve (We just love the umlaut over the i, that’s why) 
 
TASKS 
1.  Given the first 1000 words in 1700 blogs, develop age (13-17, 23-27, 33-47) and 
gender (Male, Female) prediction algorithms, with a goal of beating a baseline 

prediction accuracies of 73.24% (for gender) and 70.23% (for age). 
2.  Given 488 images, develop age (under 30, 35-50, over 55) and gender (Male, 
Female) prediction algorithms, with a goal of beating a baseline prediction accuracies 
of 71.8% (for gender) and 48.6% (for age). 
 

Based on these goals, we explored a number of classifiers and sets of features 
before concluding on which one(s) to use.  This report briefly presents some of the 
ideas we explored, and discusses the approaches we chose to implement for our final 
submission.  It consists of two main sections – work done for images and for blogs.  

 
IMAGES 

The two major classifiers we used for images were the Support Vector Machine, 
SVM, and Sparse Multinomial Logistic Regression, SMLR.  Determining the most 
viable and reasonable features for the classifier was by far the most tedious 
component of the project.  Some of the features we used included: 
1.  The Haar Wavelets algorithm,1 which detects edges of different orientations at 
many resolutions of the image.  We used these features on the cropped area just 
around the face.  The different resolutions were particularly useful since as many 
pixels get blurred together into one, lower resolution versions of images tend to be 
more robust to small translations.  These worked particularly well with SVM for 
determining gender and we used this in our final submission.   
2.  Pixel color values of key regions of the image (such as the mouth region, eye 
region, top hair region, side hair region, and cheek region) which we thought may have 
been able to distinguish images of different gender well.  For instance, men may have 
facial hair which would show up in the mouth and cheek region and women tend to 
have longer hair showing up in top head region.  Extracting the key regions was done 
with hard-coded cropping. This approach worked reasonably well.  Being given 
images that were more or less centered and upright helped this process.  These 
features predicted gender and age well, but not as well as wavelets and Principal 
Component Analysis, PCA, thus we did not use the key regions in our final submission. 
3.  PCA was used to reduce the dimensionality of the images and eliminate features 
that were not relatively useful.  We computed the principal components on the RGB 
values of an image that was cropped around the face.  After looking at the principal 
components' corresponding eigenvalues, it seemed like using the first 100 was 
sufficient to capture most of the useful information.  This enabled us transform our 
images into a lower dimensional space by subtracting the mean face from the cropped 
image, and multiplying by our top 100 principal components.  We then used the 

                                                           
1 Pascal Getreuer, MATLAB Central – File Detail – Wavelet Transforms in MATLAB, 
http://www.mathworks.com/matlabcentral/fileexchange/11133-wavelet-transforms-in-matlab 



resulting 100 values per image as our features.  This method worked reasonably well 
with SMLR on predicting age and was used in our submission.  Below is a 
visualization of the top 25 eigenfaces produced by PCA (we actually used 100 but they 
would be too small to see).   

 
Figure 1: Visualization of the top 25 eigenfaces produced by PCA 

 
4.  Experimenting with variants on the original features such as the pixel color values 
from downscaled images provided in the baseline. 
5.  Color Histogram, an attempt at making our features somewhat less brittle to 
translations and rotations.  We divided the image into small squares of pixels and 
computed a color histogram within each.  Then these histograms were given to the 
classifiers as features.  These features actually did not work nearly as well as we had 
thought they would.  
 

At the suggestion of David Weiss, we added an additional virtual feature – flipping 
the images horizontally (i.e. the left side is now the right side and vice versa).  This 
was done to prevent the classifier from using the head position (pose) as a feature. As 
will be seen later in the results, flipping the faces enhanced our percentage accuracy 
further. Another plus was that it enriched the data set we worked with.  

We also looked at different image formats2; i.e. using HSV, YUV, and LAB instead 
of RGB. Since each of these formats has a component dedicated to brightness, and the 
remaining two components define color, independent of brightness, our hope was to 
eliminate shadow and/or lighting issues. This did not, however, increase our 
accuracy. 
 
Results from Images:  
SVM 

We used libsvm as our implementation for Support Vector Machines3.  In all of 
our uses with the SVM we always used the radial basis kernel that the baseline used.  
We used 6-fold cross validation to choose the optimal penalty term for the SVM.  After 
we knew which constant we were using, we retrained the SVM using all the data.  

                                                           
2 Pascal Getreuer, MATLAB Central – File Detail – Color Space Converter, 
http://www.mathworks.com/matlabcentral/fileexchange/7744-color-space-converter 
3 Chih-Chung Chang and Chih-Jen Lin, LIBSVM – A Library for Support Vector Machines, 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 



 
Figure 2: Plot showing the percentage accuracies for different features used with SVM 

 
We found that PCA and SVM did not work well together. We believe that this because 
the first two principal components have much larger eigenvalues.  Since SVM tries to 

maximize the margin, it tends to get a very large margin by just making use of the first 
few components and basically ignoring the rest. As a result, our classifier performs 
poorly because the first two or three principal components are not sufficient to 
discriminate age or gender.  We think a better scaling technique might have been able 
to remedy this problem.  
 
SMLR 

We also tried using Sparse Multinomial Logistic Regression (SMLR), created by 
David Weiss, as an alternate discriminative method.  We were given only the training 
function for SMLR; thence, had to implement the prediction function ourselves.  We 
did this by multiplying X (an example by attribute matrix) by W (an attribute by 
output class matrix of learned weights).  In the resulting matrix we could have used 
the values in each row to compute the probability of each example falling into each of 
the classes, but since we were only interested in the determining which class is the 
most likely, we did not do any further computation; and just took the maximum value 

per row.  The column this value lies in is the most likely class; thence, the one we 
predict.  SMLR would probably have run faster than the SVM but because we could 
not get the C code to compile, SMLR had to use the Matlab version which took a long 
time to run.   

 
Figure 3: Plot showing the percentage accuracies for different features used with SMLR 

 
Meta-Classifier  

We also attempted to improve upon our accuracies by constructing a 



meta-classifier which took the predictions of several other classifiers as inputs to 
output an optimal classification.  We tried two different kinds of algorithms for the 
meta-classifier, Naive Bayes and weighted voting.  The advantage of Naive Bayes was 
that it could learn different weights for each output of each classifier.  If we have 
classifiers that make different kinds of mistakes, we could learn to ignore a classifier 
when it outputs a prediction that tends to be wrong.  However, in order to train the 

meta-classifier well, we had to split our training data into a portion for training the 
regular classifiers and then development section for training the meta-classifier that 
the regular classifiers had not seen yet.  Since we only had 488 images to start with 
and we split off 20% for testing and then another 20% off the remaining 80% training 
set, the data was getting quite thin.  The outcome of the Naive Bayes meta-classifier 
was scattered and we think this is a result of insufficient training data. To overcome 
this we tried a less complicated model, weighted voting, that we thought could train 
using less data.  This meta-classifier simply looks at the accuracy of the classifiers on 
the development data and gives each classifier a proportional weight in the vote.  This 
method worked reasonably well as it performed only slightly better than the base 
classifiers and also took much longer to train.  Perhaps with more classifiers it may 
have done better, as we only ran it with one more classifier than there were output 
classes (for gender we used 3 classifiers and with age we used 4).   
 
BLOGS 
1. Stemming:  We initially thought that pruning the dictionary down to fairly distinct 
words would give us a better accuracy.  This led us to consider using Porter 
Stemming4 on the dictionary to combine words that belonged to a family of words.  
For example, consider the word fished; it belongs to the same family or class of 
words as fish, fishing, and fishier.  The stemming process would take all words 
these words and group them together as the root word fish.  Carrying out the 
stemming process reduced our dictionary from 83,000 entries to approximately 
57,000 entries.  However, our assumption that using this new smaller dictionary 

would lead towards a higher accuracy turned out to be false.  We believe that our 
accuracy was low because as we combined the words with common stems, we also 
increased the weight attributed to the all the misspellings and random punctuation 
that was present in some of the blogs thus making it difficult for our classifier to 
accurately predict. 

2. Information Gain:  Even though our assumption that shrinking the dictionary 
would increase accuracy was shown not to hold when using stemming, we 
continued to believe that certain select words from the dictionary were more useful 

than others.  After considering using decision trees with a fixed height, we decided 
to just use the information gain calculations used to build the trees to pick out a 
small group of useful words.  To decide how many words we should keep, we did 
cross validation to choose the best threshold.  We discovered that on our 
training/development setup the cross validation always choose between 1,000 and 
10,000 words that were the most useful.  This system was the core of how we beat 
the baselines for blogs. 

3. Nearest Neighbor:  For our instance method we wrote up a nearest neighbor 
algorithm that compares blogs in the test set to those already seen based on the 
amount of words they have in common.  We then predict the test blog as being the 
same class as the blog in the training set that was most similar to it.  This 

                                                           
4 M.F. Porter, An algorithm for suffix stripping, Program, 14(3) 1980 pp 130−137. 



approach gave us worst results than just picking a class randomly so we end up 
not using it. 

4. Histograms:  We tried computing some different features other than word count or 
word occurrence.  We thought that a histogram of word lengths in a blog and a 
histogram of sentence lengths in a blog might prove useful.  The intuition was that 
older people use longer words and sentences than younger people.  We tried using 

these features with a SVM and it still rarely predicted old people.  We think that 
while young people have shorter words and sentences, the middle aged and older 
group have similar word and sentence length histograms.   

5. Latent Dirichlet Allocation5:  LDA was suggested as possibly being useful.  The 
output from this algorithm is a set of words that describes a set of blogs.  The 
words we got as output consisted of short words such as the, a, and, etc.  
Intuitively we dismissed the effectiveness of using these words as they did not seem 
capable of differentiating between either age or gender groups. 

6. String kernel:  We used this kernel with SVM for the blogs. It initially seemed like a 
viable option; however, after spending some time trying to understand how the 
authors determined the run time of the algorithm they presented in their paper, 
and figured out we were not ready to pay the computational cost associated with 
implementing it. 

7. Being a naïve group (recall our group name), we had no choice but to attempt the 
popular Naïve Bayes (NB) algorithm. We discovered the learner predicted old people 
very rarely, if at all.  Determining what features to feed the learner to enable it 

identify blogs in the oldest age class was challenging.  After skimming through 
some of the blogs managed by older people, we picked up upon a trend in most of 
them. The ones we perused did not have overarching topics or sets of words 
differentiating them from the blogs managed by the teenagers. For instance, the 
blogs managed by teenagers had common words like lol, omg, school, homework, 
etc whereas the blogs from the older group had no such group of words.  We did, 
however, find that blogs in the oldest age range tended to have well structured, 

grammatically correct, well punctuated and fairly longer sentences. These patterns 
do not lend themselves to being encoded into features that a classifier could use to 
make its predictions hence trying to find a concrete link between the blogs 
managed by people in the oldest age range remained a core task which was never 
adequately completed. 

8. A number of papers we perused on text classification usually used the Reuter Data 
Set, which we assume is a fairly clean, well structured text data set, relative to our 
data set. We think it will be interesting to see how tools and approaches developed 

for classification of the Reuter Data Set translate to unstructured data sets like 
ours.  

 
SUMMARY 

From this project we learned quite a bit about using machine learning in practice 
by applying theory we learned from class and finding when those ideas potentially 
break down.  Finding good features that discriminate the classes well and are not too 
noisy turned out to be one of the largest challenges.  Additionally, we found using 

simpler methods tended to work better than the more complicated approaches that we 
tried. 

                                                           
5 D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, 
January 2003. 


