
CIS520 Project Report, Fall-2009

Geetika Vasudeo (geetikav@seas) Inderpreet Nanda (inanda@seas)
Sibasish Acharya (sibasish@seas)

December 2, 2009

1 Introduction

The goal of this project is to engineer various age and gender prediction algorithms and compare their
results. We have two types of data available for training and testing - blog postings(text) and faces
(images). In our experiments, we have used some basic machine learning algorithms like Naive Bayes, Tree
Augumented Naive Bayes, Logistic Regression, Support Vector Machine, Boosting, Principal Component
Analysis, Latent Semantic Indexing/Singular Value Decomposition as well as few tricks like Stemming
and Sanitization for blog data and Cropping and Resizing for image data.

1



2 Part 1 - Blogs

Blog data contains around 1700 blog entries. The dataset we use for training and testing has words from
each blog extracted and tokenized. For all of these below experiments we use 80% of the given data for
training and rest for testing.

2.1 Methods tried

1. Boosting [10]:

Description- Boosting induces multiple classifiers in sequential trials by adaptively changing the
distribution of the training set based on the performance of previously created classifiers. At the
end of each trial, instance weights are adjusted to reflect the importance of each training exam-
ple for the next induction trial. The objective of the adjustment is to increase the weights of
mis-classified training examples. Change of instance weights causes the learner to concentrate on
different training examples in different trials, thus resulting in different classifiers. Finally, the indi-
vidual classifiers are combined through voting to form a composite classifiers which would perform
better than any of the individual classifiers.

We applied boosting on top of the baseline Naive Bayes (NB) classifier by adding weights to
the occurrence count of the words for calculating the parameters of the NB classifier, and then
updated the weights after each boosting iteration. We updated the weights for each successive
round of boosting based on the training error of the previous round. Equations/Code used for
implementing boosting on top of the baseline NB classifier:

(a) Calculation of NB parameters using the boosting weights (D)
for all blogs in trainset do

Get all features for a blog entry.
if output == female then

female count = female count + 1 + D(current blog)
else

male count = male count + 1 + D(current blog)
end if

end for

(b) Update of weights after boosting iteration was done on the basis of the training error of the
previous iteration

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is the normalization factor for distribution Dt+1

Results- We implemented boosting for the blogs gender classification. Accuracy equal to the
baseline was obtained. But the boosted classifier did not improve upon the accuracy of the baseline.
(See consolidated statistics below for exact figures).

Comments/Reasons- The possible explanation is that the naive Bayesian classier is quite stable
with respect to small changes to training data, since these changes will not result in big changes
to the estimated probabilities. Therefore boosting naive Bayesian classifier may not be able to
generate multiple models with sufficient diversity. These models cannot selectively correct each
other’s errors during classification by voting. In such a situation, boosting cannot reduce the error
of naive Bayesian classification [8].

2. Data preprocessing (Reducing number of features):

Description- The blogs were represented as sets of words indexed by a dictionary that stores all
the words that occur in any of the training dataset. The dictionary contained many tokens which
were garbage/did not provide any information gain in the prediction of age and gender. e.g- ’ !@)̃)’,
’12##aj%%’, etc. To eliminate such unwanted entries, we pre-processed the dictionary and then
mapped it to a new dictionary containing more relevant information.

Some rules applied for pre-processing are as follows:

2



(a) If the word contains at least an alphanumeric character then

i. For the words that start with a special character- If the number of special characters is
less than 4 then prune them else declare the word as an OUTLIER.

ii. For the words that end in special characters- If the number of special characters is less
than 4 then prune them else declare the word as an OUTLIER.

iii. For the words that contain only numerals- If the number of digits is less than 6 then group
the word into the category NUMBER else declare it as an OUTLIER.

iv. For the words that contain only alphabets and numbers- If the words are of the form (1-
5)alphabets(1-5)numerals or (1-5)numerals(1-5)alphabets then categorize them as NUM-
CHAR else discard the word as an OUTLIER.

v. For the words that contain substring of the form (alphabet)(special character)(alphabet)-
If only one special character is present then test for the presence of an apostrophe and
leave the word as it is, else discard it as an OUTLIER.

(b) For the words that contain only special characters.

i. If it is a single special character then categorize it as- ?, ! and SPECIALCHAR for the
rest.

ii. If there are multiple special characters of the same type then map them as:
???? as ?
!!!!!! as !
. as DOTTSS
and all the others are categorized as SPECIALCHAR.

(c) There are more intermediate preprocessing rules like the two above.

(d) Finally, all all-caps words are left as such and the mixed-case words are changed to lower case
and then passed to a stemmer [9] that finds the root words and all the words mapping to the
same stem are clubbed together.

We thus removed the garbage/noise patterns from the data by classifying them as OUTLIERS
and then removing them completely from the dictionary. And we also grouped together similar
patterns into categories like NUMCHAR, NUM, SPECIALCHAR, etc. We then created a new
dictionary containing only the relevant patterns left and also created an index-mapping from the
indices of the words in the base dictionary to the indices of the stemmed words/patterns/category
descriptors they mapped to in the new dictionary. As a result of this pre-processing the total
number of words/features was greatly reduced.

Result- As a result of pre-processing, we reduced the no. of words in the dictionary from approx.
90000 to approx 45000(50% reduction). After pre-processing the NB classifier gave better results
than with the basic data. (See consolidated statistics below for exact figures).

Comments/Reasons - The performance of the classifier improved because a lot of noise was removed
from the data. The predictions were based on the more significant words. Also the words having
the same meaning/significance are grouped together, thereby improving their impact/weightage
for the prediction.

3. Change NB classifier to another better generative classifier:

Description- We chose to try to implement Tree Augmented Naive Bayes (TAN) classifier [6]. But
for the training of the TAN classifier, a bayes net has to be built, which requires a (no. of features)
by (no. of features) loop. So we encountered time and space complexity problem, using even the
reduced set of words (after pre-processing). We ran a matlab implementation of TAN with the
reduced set of 45000 words as the features, but the process seemed to take absurdly long- it did not
return even after about 8 hours! So as we had exhausted the data pre-processing/pruning option,
this motivated us to next go for dimensionality reduction, using Singular Value Decomposition
(SVD). We also linked this with Latent Semantic Indexing (LSI) [11]. LSI computes the term
and document vector spaces by transforming the single term-frequency matrix, A, into three other
matrices a term-concept vector matrix, T, a singular values matrix, S, and a concept-document
vector matrix, D, which satisfy the following relations:

A = TSDT

TT T = DT D

3



= Ir

TTT = Im

DDT = In

where S1,1 ≥ S2,2 ≥ ... ≥ Sr,r > 0 and Si,j = 0 when i 6= j. We formed the term-document
matrix A using the words after pre-processing as the terms and the blogs as the documents. We
then obtained the SVD decomposition of the term-document matrix. We then chose the most
important words by taking only the top K rows of the concept-term matrix TT and then choosing
only those words which had the N highest variance figures for the top K most important concepts
(the top K rows of TT ). We choose parameters like K = 200, N = 2000. After this dimensionality
reduction, we reduced the total no. of words to just around 15000 (starting from a total word
count of 90000)- a reduction of more than 80%. We then again created a new dictionary containing
only the relevant 15000 words left and also created an index-mapping from the indices of the words
in dictionary obtained after Pre-Processing, to the indices of the words left in the new dictionary.
This mapping would then be used along with the mapping defined in the previous step to get
the overall mapping from the base dictionary of 90000 words to the dictionary after LSI/SVD
containing 15000 words. Out next goal was to apply TAN using this reduced set of words/features.
But our time ran out and we had to stop after using SVD.

Result- After reducing the no. of words to just 15000 words, the NB classifier still gave comparable
performance to the original version operating on 90000 words. The classifier after SVD did better
than the baseline in the tests, for gender prediction. But it did not beat the age baseline in the
tests, though it gave comparable performance to it. That is, despite using only 15000(20%) words
of the 90000 words used by the base classifier, the LSI / SVD classifier performed better than the
baseline for gender prediction and gave comparable performance for age prediction. This indicated
that the LSI / SVD procedure was proceeding on the correct lines; some more tweaking would have
most probably improved its performance beyond the baseline for both age and gender. We were
unable to complete the implementation of TAN classifier on top the reduced data set.

Comments / Reasons - The reason why the classifier’s performance improved in one part(gender)
and was maintained in the other(gender) despite a great reduction in the no. of words is that-
The SVD operation, with the LSI modification of reducing the rank of the singular matrix, has the
effect of preserving the most important semantic information in the text while reducing noise and
other undesirable artifacts of the original space of A. Therefore the words that correspond to the
most important concepts that separate the data would be preserved after the SVD.

2.2 Consolidated Statistics

Methods tried Age Gender
Baseline (NB) 67% 69%
NB + Boosting 67% 69%

NB + Data preprocessing 71% 70.2%
NB + Data preprocessing + (LSI)/(SVD) 67.7% 71.6%

Our final classification are shown in bold

4



3 Part 2 - Images

Image data contains around 600 faces. For all of these below experiments we use 80% of the given data
for training and rest for testing.

3.1 Methods tried

1. Cropping and Resizing:

Description- Cropping refers to the removal of the outer parts of an image to improve framing and
accentuate subject matter. We define a rectangular region around the face and crop the image for
training and prediction. Resizing of images is the change in the pixel resolution of the images. The
images are resized to a square of 25X25 for the classification purpose.

Results- We saw more improvements in age prediction accuracy (5%) than that in gender (1%).

Comments/Reasons- Cropping of images basically helps in reducing the noise in the data by elim-
inating not-so-important features of the image which barely contribute describing the image. The
images are cropped around the faces to obtain only the facial features and leaving out unessen-
tial details like background, hair style etc. Also, resizing is helpful in obtaining equal number of
features from every example as the pixels of image define it’s features.

2. HOG Histogram of Oriented Gradients [4]:

Description- HOG is a feature extraction method based on evaluating well-normalized local his-
tograms of image gradient orientations in a dense grid. The basic idea is that local object ap-
pearance and shape can often be characterized rather well by the distribution of local intensity
gradients or edge directions, even without precise knowledge of the corresponding gradient or edge
positions. In practice this is implemented by dividing the image window into small cells, for each
cell accumulating a local 1-D histogram of gradient directions or edge orientations over the pixels
of the cell. The combined histogram entries form the representation. For better invariance to il-
lumination, shadowing, etc., it is also useful to contrast-normalize the local responses before using
them. This can be done by accumulating a measure of local histogram energy over somewhat larger
spatial regions and using the results to normalize all of the cells in the block. These normalized
descriptor blocks are referred to as Histogram of Oriented Gradient (HOG) descriptors. We applied
HOG over the cropped and resized image examples to reduce the features.

Result- After extracting features by HOG technique, we noticed the accuracy of the classifier,
instead of improving, showed signs of decline.

Comments / Reasons - The HOG method did not help in strengthening the classifier as it em-
phasizes more on pixels that lie on edges where as our dataset did not convey a lot of significant
information just via the edges. We noticed a small improvement in accuracy when we did not
crop/resize images. The reason for this could be, HOG somewhat reduced noise by normalization
(A single pixel as a feature would add much more noise than a histogram based feature).

3. SIFT Scale Invariant Feature Transform [7]:

Description- For any object in an image, there are many features which are interesting points on
the object that can be extracted to provide a feature description of the object. It is important that
the set of features extracted from the training image is robust to changes in image scale, noise,
illumination and local geometric distortion, for performing reliable recognition. Scale Invariant
Feature Transform (SIFT) transforms an image into a large collection of feature vectors, each of
which is invariant to all of the mentioned changes. Key locations are defined as maxima and
minima of the result of Difference of Gaussians (DOG) function applied in scale-space to a series
of smoothed and resampled images. Low contrast candidate points and edge response points along
an edge are discarded. Dominant orientations are assigned to localized key points. These steps
ensure that the key points are more stable for matching and recognition.

Results- The SIFT feature extraction does not help much in improving the performance of the
classifier.

Comments/Reasons- Methods without SIFT could exploit small transformation invariance from
multiple images of the same face (training dataset has almost 4 similar images for the same face
with minute transformation) and since SIFT basically does the same thing, it is kind of redundant.

5



Also, the images have already been cropped and resized, so there is not much noise which could be
eliminated with this technique and hence, we could not benefit much by applying it to our classifier.

4. Virtual example generation:

Description- Virtual examples are examples created from the given data by applying transforms
like translation, rotation, scaling, etc. assuming that making minor changes to the images does
not change its classification. Virtual examples help in increasing the total number of examples and
facilitates better training of the model.

Results- The virtualization of data improves the efficiency of the classifier but is easily prone to
overfitting. It does not give a very consistent result over the test data.

Comments/Reasons- The introduction of more examples improves the training model. Since, the
number of features in case of images is pixels and thus is very large, so increasing the number of
examples makes the two comparable. This leads to better prediction and hence improved classifi-
cation. The only drawback is the overfitting that arises due to this method which may be overcome
by applying an appropriate proportion of virtual examples in the training dataset.

5. Logistic Regression + Support Vector Machine [3]:

Description- The baseline uses Support Vector Machine for classification. After we virtualize the
training data, we could observe a heterogeneity in training data, e.g - number of female examples
are more than number of male examples. SVM is known not to work well if the training data
is heterogeneous. So, we try to combine SVM and LR [3] for training our classifier. The basic
approach is, we divide the female (larger set) of examples to k chunks. Then we add up all male
(smaller set) examples to create a new training set. So, in effect, we have k training sets. Applying
SVM technique [5] [2], we find k hyperplanes. Now, for each example in the original dataset, we
compute distances to the k hyperplanes. These k distances are nothing but our new feature vector
for a single example. We run a standard LR [1] algorithm to train our classifier on the whole
training data.

Results- We used this technique on Gender classification and saw significant (6%) improvement in
over baseline accuracy.

Comments/Reasons- The basic reason of improvement could be neutralizing the heterogeneity in
dataset. When choosing the number k, we take care that number of female examples in each k
chunks are almost comparable to total number of male examples.

3.2 Consolidated Statistics

Methods tried Age Gender
Baseline (SVM) 48% 74%

SVM + Cropping + Resizing 53.15% 75.94%
SVM + HOG + Cropping + Resizing 45.37% 73.22%
SVM + SIFT + Cropping + Resizing 47.42% 73.8%

SVM + Virtualization + Cropping + Resizing 52.04% 76.81%
SVM+LR + Virtualization + Cropping + Resizing 50.13% 79.56%

Our final classification are shown in bold

6



References

[1] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[2] C. J. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2:121–167, 1998.

[3] Y. chin Ivan Chang. Boosting svm classifiers with logistic regression, 2003.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In C. Schmid,
S. Soatto, and C. Tomasi, editors, International Conference on Computer Vision & Pattern Recog-
nition, volume 2, pages 886–893, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-
38334, June 2005.

[5] M. A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28, 1998.

[6] S. Hong-bo, W. Zhi-Hai, H. Hou-Kuan, and J. Li-Ping. Text classification based on the tan model.
In TENCON ’02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications,
Control and Power Engineering, volume 1, pages 43–46 vol.1, Oct. 2002.

[7] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60, 2004.

[8] K. Ming, K. M. Ting, and Z. Zheng. Improving the performance of boosting for naive bayesian
classification. In In Proc. 3rd Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pages
296–305, 1999.

[9] M. F. Porter. An algorithm for suffix stripping. 14, 1980.

[10] R. E. Schapire. A brief introduction to boosting, 1999.

[11] Wikipedia. Latent semantic indexing.

7


