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ABSTRACT 

The atomic force microscope (AFM) has evolved to the point of enabling the resolution of sub-nanometer features on a 
surface. Rather than artificially generated surfaces, high-resolution AFM images of polycrystalline silicon can be used to 
characterize the contact forces in micro- and nanoscopic devices. In this work, finite element models of characteristic features 
of the polysilicon surface are developed to explore the evolution of contact forces during a frictional sliding event. In 
conjunction with these analyses, discrete contact models are developed and applied to a novel MEMS device. This work also 
illustrates some of the fundamental limitations of Greenwood-Williamson and other homogenized surface models when 
attempting to characterize the contact and frictional properties encountered in MEMS devices. There is evidence that accurate 
contact analyses of MEMS devices involving either very light loads or small numbers of contacting asperities can only be 
performed if spatial information for the contacting surfaces is retained. In investigating that hypothesis, 2D and 3D 
geometrically based contact simulations are performed to characterize an experimentally observed phenomenon during 
frictional sliding.  
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INTRODUCTION 

This paper discusses the fundamental phenomena that occur when two surfaces are pressed against each other and, later, 
when those surfaces are slid relative to one another. For decades, researchers have relied on a few extremely well used 
classical theories [1-3]. However, surface profiling by the atomic force microscope (AFM) in the last several years has revealed 
new information that brings us closer to understanding the contact phenomena on the nanometer asperity scale [4]. The main 
driver of this work is the need to explore the contact, adhesion and frictional properties of polysilicon and coated polysilicon, as 
they pertain to response and longevity of MEMS devices. Technological advances in miniaturization and manufacture of 
MEMS have outstripped our mechanical knowledge of such systems. Fundamental research on the physics of these systems 
is therefore essential to further the growth and development of MEMS devices. 
 
Homogenized or statistically based surface models have endured for decades in the literature and were instrumental in leading 
to an understanding of the relationship between friction and contact area. However, these methods as well as fractal surface 
representations are not completely satisfactory as the implementation of some of these techniques requires a level of 
arbitrariness through the selection of certain parameters [5,6]. Of course a certain level of approximation will always exist in 
calculations because of the dependence on the accuracy of the representation of the surface by the measuring device. 
Additionally, statistical methods require a statistically significant number of contacts in order to be representative of the true 
surface, while fractal methods still possess a level of arbitrariness in the parameter selection process. Both of these 
techniques assume a pre-existing knowledge of the surface and its length scales or distributions.  
 
There is evidence that for surfaces in contact under very light loads, it is the outliers that will dictate performance, in which 
case homogenized models may not be able to appropriately capture the response or nature of the surface [7,8]. In fact, the 
correct description of MEMS response characteristics, may require the retention of all the spatial information of two contacting 
surfaces. To this end, the development of discrete analysis tools, in conjunction with tradition finite element models with 
adhesion capabilities are essential elements for progress. 
 
CLASSICAL GREENWOOD-WILLIAMSON MODEL VS. DISCRETE ANALYSIS 

An extensive literature review of surface contact and friction shows that a model developed by Greenwood and Williamson 
four decades ago [1] is quite likely the classic foundation of surface contact research. That model (henceforth referred to as 
GW model) provides an elegant means of calculating the effective contact area, among other variables, when two surfaces are 
pressed against each other. Of the surface features, the model involves only statistical features, namely, the distribution of the 
peak height (e.g. Gaussian, exponential, etc.), and an average radius of curvature of the asperities. It does not take into 
account individual asperities. However, the model also shows that the true contact area is very small compared to the 



 

 

apparent contact area, as is the number of asperities that are in contact. In many MEMS applications, the apparent contact 
area is already quite small. Therefore, the number of asperities in contact may be so small that it is necessary to treat each 
asperity “individually”. Today, atomic force microscopy (AFM) enables us to retain full spatial information on the surface 
topography. Based on the measured surface profile it is possible to use Hertz-based solutions to perform discrete calculations 
of contact forces and contact areas. Thus, we embarked on an investigation of how well the GW model predicts contacts in 
MEMS surfaces, using actual topography of polycrystalline silicon surfaces.  
 
Greenwood and Williamson showed that a purely elastic model yields a linear relationship between true contact area and 
applied normal load. In fact, that model shows that only very few contacts are needed to obtain the expected linear relationship 
between contact area and applied load. However, that is not the entire story. Maintenance of that relationship requires that 
sufficient numbers of contacts be added as contact force increases and/or plasticity is initiated at sufficient numbers of 
contacts. As shown in a very finely controlled experiment by Archard [2], the exponential relationship between contact area 
and normal force can typically exist within a range of values. This is an extremely important observation especially in instances 
when the number of contacts is expected to be very few and/or the contact force is small in magnitude. 
 
Following the GW model, the relationship between force acting through an asperity and true contact area can be given by the 
following equation 

n
rKAP =  (1) 

 
where P is the asperity force, K is a constant obtained from material and geometric parameters in the Hertzian contact 
formula, and Ar is the real contact area. For a single asperity elastic contact, the exponent will have the value n = 1.5 
according to Hertz theory. Depending on the nature of the surface, as more and more asperities come into contact the GW 
model implies that this exponent should trend towards n = 1, although as shown by Archard [2], for example, the value of n will 
depend strongly on the surface conditions and could lie within the envelope 1.0 < n < 1.5. For example, Archard’s experiments 
with corrugated Perspex specimens gave a value of n of approximately 1.23. 
 
To investigate whether the GW model can predict the contact behavior of real polysilicon surfaces, we calculated the 
expoential in Equation (1) using a 10µm x 10µm polysilicon surface (1024 x 1024 pixels), with surface roughness of 2.7 nm 
rms. The surface data was obtained using an atomic force microscope (AFM). A portion of this surface, with the heights 
exaggerated, is shown in Figure 1.  
 

 
 

Figure 1: AFM surface profile for analysis. 1µm x 1µm sample from the full image. Height measure taken  
with respect to mean surface height.  

 
Summits were arbitrarily identified as local maxima within a 200 nm x 200 nm box, a size that roughly corresponds to the 
average grain size of the polysilicon surface analyzed. Computation resulted in the number of summits = 676 and the peak 
height standard deviation σs = 4.5. Following the GW derivation, we simulated the case where a hypothetical flat, rigid plane 
was pressed into the polysilicon surface, and calculated the exponent n as a function of the distance w the rigid plane was 
pressed into the polysilicon. All of the intrinsic assumptions of the GW model were followed for this calculation. However, in 
contrast to GW derivation, we took each discrete asperity into account as it made contact with the flat surface. Asperities were 



 

 

identified and the corresponding radii of curvature were calculated by fitting elliptic parabolloids. Using the expressions for 
force and true contact area as functions of interference distance, the power n can be derived as the following function of the 
interference distance:  
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where r are the summit radii of curvature, z are the summit distances measured with respect to the initial location of the 
smooth contacting plane (for convenience these are ordered z0 < z1 < …< zm), H(.) is the Heaviside function, and m is the 
number of summits on the rough surface. A representative schematic is shown in Figure 2(a). 
 
Figure 2(b) shows the exponent n resulting from the above discrete calculation. The figure also gives a plot of the number of 
discrete contacts (referenced to the right axis) involved in the calculation as a function of the interference distance. The 
exponent value, referenced to the left axis, is initially n = 1.5, and subsequently at a large enough interference distance enters 
an envelope around n = 1. The initial drop at slightly less than 5 nm interpenetration corresponds to the initiation of contact at 
the second asperity. Subsequent drops correspond to additional contacts achieving intimate contact with the compressing rigid 
plane. The plot indicates that only a very small number of contacts involving asperities with different heights (and presumably 
different radii of curvature) are needed to obtain exponent values near 1. 

 

 
(a) (b) 

 
Figure 2: (a) Schematic defining parameters of Equation 2. (b) Effect of contacting asperities on the contact area exponent. 

 
An important point needs to be made however: the maintenance of an exponent in the vicinity of n = 1 requires the continuous 
introduction of new contacting asperities at a sufficiently high rate as the surfaces come together. This rate must be high 
enough that the difference in asperity heights becomes less significant as the total interference distance increases. If that is 
not the case, then n will be other than 1. Figure 2(b) shows that, when only the first asperity is in contact, the power n is 1.5 as 
determined by Hertz’ law. The figure also shows that the second asperity comes in contact approximately 5 nm after the first 
asperity. If these were the only two asperities on an otherwise perfectly smooth surface, the contact area exponent would 
asymptotically approach n = 1.5 for increasing interference distance.  
 
Normal distribution assumption and resulting contact area exponent 
Part of the Greenwood and Williamson paper (GW) discusses a case where the distribution of asperity heights is assumed to 
be an exponential function. This exponential distribution yields a constant value of n = 1 regardless of interference distance. 
However, GW suggests, and it is commonly assumed that the distribution of asperity heights is Gaussian. In fact, the 
Gaussian probability density function resembles an exponential function only at the leading tail; therefore, for sufficiently large 
interference distances, n should diverge from the constant value obtained from the exponential distribution, and the value n = 
1.5 should be approached. Figure 3 shows the divergence from n = 1 (dashed line) as interference distance w grows.  
 



 

 

 
 

Figure 3: Comparison of contact area exponents for discrete calculation(solid/jagged), normal distribution(dashed), and 
exponential distribution(constant). 

 
To further show whether the experimentally profiled surface could fit the power law in the GW model with Gaussian height 
distribution, we plot the number of contacts as a function of interference distance again in Figure 4. In Figure 4 we overlay the 
plot of the number of contacts as a function of interference distance as predicted by the GW model with Gaussian height 
distribution (smooth curve). The graph shows that the GW model does not accurately predict the number of contacts, where 
the GW curve is shifted to coincide with the experimental curve at w = 15 nm. 

 

 
 

Figure 4: Comparison of number of contacting asperities for discrete contact model vs. Gaussian approximation. Discrete 
case(stepped); shifted Gaussian tail to match number of contacts at 15 nm interference (smooth). 

 
 

Another well-used classical model was derived by McCool [3] as an extension to the GW model. This method uses the zeroth, 
second, and fourth spectral moments (m0;m2;m4) of the asperity height distribution. Although not shown here in a graph, 
simulations using McCool model exhibits the same behavior as the GW model using a normal distribution. 
 
The above calculation demonstrates that it is extremely important to understand the nature and distribution of the highest 
asperities of the surface. In particular, if low loads are applied to contacting surfaces and a tightly packed distribution of tall 
asperities dominate the contact behavior, the discrete nature of contact cannot be captured by a GW-based model. Moreover, 



 

 

it should not be assumed that increasing the number of contacts will guarantee n = 1. The exponent n depends strongly on the 
nature of the surface.  
 
SIMULATIONS OF SLIDING CONTACT 

As described previously, homogenized models may not be suitable for describing multi-asperity contact, hence they would not 
be suitable for describing sliding contact. Because the operational physics of certain MEMS devices [7,9] is essential to its 
subsequent performance, discrete and finite element simulations of sliding contact can provide important pieces of information. 
It has been demonstrated in the literature [10,11] that an atomic force microscope, an ideal singe asperity, observes the 
proportionality between friction and true contact area for a variety of systems. For surfaces with multiple contacting asperities, 
the historical difficulty has been calculating the true contact area. 
 
The global complexity of a representative apparent contact area makes it difficult to isolate interacting phenomena. Therefore, 
we have initially sampled a small coupon of the polysilicon surface over which to run sliding contact simulations. Figure 5 
shows a slice from the AFM-profiled polysilicon surface. The length of this slice is 100 nm; the width, 35 nm. Above the bottom 
slice, a synthesized polysilicon die with a spherical surface is pressed down with a ramping-up pressure until the pressure on 
its top side reaches 800 MPa. The die is slid across the bottom surface with a prescribed lateral displacement. The prescribed 
pressure and position are shown in Figure 5(b). Both the die and substrate are assumed isotropic with elastic modulus, E = 
161 GPa and Poisson’s ratio ν = 0.23. 
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Figure 6: Contact radius calculations for geometry pictured in Figure 5 for frictional sliding over a polysilicon substrate and a 
SAM CH3-thiol coated substrate. 

 
CONCLUSIONS  
 
Although the analysis described in this paper is limited to small force, nominally elastic contact of polysilicon, it is still of 
importance because the force levels considered are within the range of those seen during operation of some MEMS devices. 
Some important conclusions to draw from the analysis are the following: 
 

• The exponential relationship between force and true contact area cannot be found unless discrete contact analysis is 
performed. 

• It is unlikely that any actual polysilicon surface would exhibit a normal distribution, much less one that is exponential. 
• The addition of a SAM layer substantially increases contact area, while reducing tangential force. 

 
Discrete analysis, although not elegant, is necessary when certain classes of contact problems, most notably MEMS. Although 
large-scale finite element analyses of sliding contact problems are expensive computationally, our capabilities of performing 
simulations with representative contact areas are rapidly improving. In the very near future enhanced computing abilities will 
allow a more complete treatment of the preceding analysis including the impact of adhesion on the frictional and contact 
response. 
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