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3. Force Calibration

                                                                        

3.1 Introduction

In this chapter we consider a number of specific issues related to the calibration of

force measurements using friction force microscopy (FFM).  As discussed previously, the

FFM can provide information on the atomic-level frictional properties of surfaces.

However, reproducible quantitative measurements are in fact difficult to obtain for reasons

we shall discuss below.

The most common experimental apparatus for FFM combines commercially

available microfabricated silicon or silicon nitride cantilever-tip assemblies with an AFM

using optical beam deflection sensing1,2.  All commercially available scanning probe

microscopes capable of FFM and many custom designed instruments use this

combination3,4.

Microfabricated cantilevers offer many advantages - they are available in a range of

force constants, their small size leads to high resonant frequencies, they are relatively easy to

use, and the tips are relatively sharp and durable.  On the other hand, their small size makes

it difficult to make direct measurements of mechanical properties such as the force constants

of the cantilever.  Calculation of cantilever force constants are also difficult as they depend

on knowledge of critical dimensions such as lever thickness and tip height that are difficult

to control in fabrication and difficult to measure accurately even with a good scanning

electron microscope (SEM).  The mechanical properties of silicon nitride cantilevers

produced by chemical vapor deposition (CVD) can vary widely5,6.  Levers are often

metalized to increase optical reflectivity, but the thickness and mechanical properties of the
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coating (grain size, etc.) may not be known and the effect of metalization on the cantilever

force constants can be significant7.  In general, calculations for the commonly used V-

shaped levers require complex numerical methods8,9.  

The optical beam deflection sensor also has experimental advantages for FFM along

with difficulties for quantitative friction measurements.  One sensor can measure deflections

due to both normal and lateral forces.  The sensitivity and signal/noise ratio of this method

are good and changing cantilevers is relatively easy.  However, both the absolute values and

the ratio of normal and lateral force sensitivity depends on the precise alignment of the laser

beam with respect to the cantilever.  Furthermore, the angular deflection of commercial

cantilevers due to lateral forces is one to two orders of magnitude smaller than for normal

forces, so small misalignments can cause significant errors in lateral force measurement due

to cross-talk between normal and lateral deflections.

In general, discussion or even statements of uncertainties in AFM measurements is

often neglected.  A good introduction to aspects of error analysis with force microscopy is

contained in the paper of Schwarz et al.10  Here we will discuss some experimental aspects

of the optical deflection FFM, present methods for estimating the normal and lateral

response of microfabricated cantilevers, describe the "wedge" method of force calibration,

and present experimental results for commercial V-shape cantilevers11.

3.2 Optical Beam FFM

In the optical beam deflection method, a laser beam is reflected off the back of the

AFM cantilever into a quadrant photodiode position sensitive detector.  We define a

coordinate system with X along the lever long axis, Z along the tip axis, and the origin at the

base of the lever.  The incident laser beam is in the X-Z plane, and the reflected beam is

incident on a four-quadrant photodiode which is (ideally) oriented with one axis along the Y

direction in the X-Z plane (Figure 3.1).  For small deflections the difference in photocurrent

between the upper and lower pairs of diodes (A-B) will be proportional to the slope of the
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lever in the X-Z plane at the point of reflection XLASER.  Similarly, the difference in

photocurrent between the left and right pairs of diodes (1-2) is proportional to the lever twist

out of the X-Z plane at XLASER.

The photodiode output signal S as a function of angular deflection ϕ can be

calculated for a Gaussian beam if the total size of the photodiode is large compared to the

laser spot and the “dead” area between the quadrants is neglected.  In this case

S
A B

A B
e du

u

( )ϕ
ω π

ω
ϕ

= −
+

= −
−

∞

∫1
1 8

2 2

2

∆
∆ (3.1)

where ∆ω is the Gaussian half width (angular divergence) of the beam, A is the photocurrent

on the upper two quadrants, and B is the photocurrent on the lower two quadrants.  This

Figure 3.1  Schematic of cantilever and deflection sensor for the optical beam

deflection FFM.  The incident laser beam in the X-Z plane is deflected proportional

to the slope (not the displacement) of the lever X-Z plane, and to the twist of the

lever normal out of this plane, at the point where the laser beam hits the lever.
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expression cannot be integrated analytically, but it may be expanded around ϕ = 0 (see

appendix), with x = ϕ
ω∆

S x x x x x( ) [ ...]= − + − +8 2
3

2 2
5

4 4
21

61π (3.2)

The term in square brackets describes the non-linearity of the detector response.  For

S = 0.2, the deviation from linearity is -1% and for S = 0.5 it is -6.1%.  Under our typical

experimental conditions, a normal force of ~ 1 nN produces a deflection S ~ 0.002.  The

photodiode detector signal is quite linear in response to FFM lever deflection over a

relatively wide range, which we have verified experimentally using a laser interferometer to

independently monitor microscope displacement.

If the reflected laser beam is round, the angular sensitivity is equal for deflections

due to normal and lateral forces.  This is often not the case under experimental conditions.

Most optical beam FFMs use diode lasers, which produce asymmetric beams.  In addition,

if the laser spot is not carefully focused and aligned on the cantilever, there may be

significant diffraction effects where the reflected spot is cut off by the cantilever edge.  Let

R
dS

d

dS

dDETECTOR
NORMAL LATERAL=

ϑ φ
(3.3)

describe the angular sensitivity ratio for normal and lateral angular deflections.  If the beam

is focused on the cantilever through a single-mode optical fiber, it is possible to have a

radially symmetric and well focused Gaussian beam incident on the cantilever.  In this case

RDETECTOR can be very near 1.

Forces acting on the apex of the tip in the Z direction cause the lever to bend with a

displacement z and tip spring constant kZ of the form

z F x F f xZ Z( , ) ( )= (3.4)
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k f XZ TIP= 1 / ( ) (3.5)

with the tip located at X
TIP

.  Microfabricated levers are generally planar, and quite stiff with

respect to bending in the X-Y plane, and in any case such deformations cannot be detected

by the optical beam method.  The main effect of lateral forces (acting on the tip apex in the

Y direction) is to twist the lever, with an angular deflection Θ and resulting tip spring

constant kY of the form:

Θ( , ) ( )F x F g xY Y= (3.6)

  k g XY TIP TIP= 1 / ( )H (3.7)

where HTIP is the cantilever tip height.  Longitudinal forces (acting on the tip apex in the X

direction) are more complicated for the optical beam FFM.  The in-plane compression of

the lever is insignificant, so the main effect is to cause a bending or buckling of the lever in

the X-Z plane

z F F h xX X( ) ( )=   . (3.8)

The tip displacement ∆x and associated spring constant kX for the tip apex in the X direction

due to cantilever buckling are

  
∆x F

h X

xx TIP
TIP= ∂

∂
H

( )
(3.9)

  
k

h X

xX TIP
TIP= 1 /

( )
H

∂
∂

(3.10)

Bending of the tip itself due to forces in the X or Y direction will not be detected by the

optical beam method.  Compression of the tip along its axis (Z direction) is insignificant.

We can define a lever deflection sensitivity ratio
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R x
f x

x
g xLEVER( )

( )
( )= ∂

∂
(3.11)

as the ratio of angular deflections produced by normal and lateral forces.

For the "V-shape" cantilevers commonly used in FFM the functions f(x), g(x) and

h(x) that describe the lever response must be calculated numerically.  Some insight into the

general properties of the optical beam method can be gained by considering the form of

these functions for a simple beam lever of width WL and thickness TL which is small

compared to its length LL, with a tip of height HTIP at the extreme end (XTIP = LL).  Using

familiar continuum elasticity theory formulas12

  
f x

x x

E
( ) = −6 22 3

3

L
W T

L
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(3.12)
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L L

( ) = 6 2

3W T
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where E and G are the Young’s and shear moduli of the cantilever.  Notice that these

functions do not have the same x dependence - the ratio as well as the absolute values of the

angular sensitivities to normal and lateral forces depend on the laser spot position XLASER.

For the simple beam

  
R x

x

HLEVER
L

TIP

( )
( )

= −
+

2
1

L
ν

(3.15)

where

G
E=
+2 1( )ν

(3.16)

defines the Poisson ratio ν.
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Typical microfabricated cantilevers have tip heights ~ 3 - 4 µm and lengths ~ 80 -

 300 µm, so the lateral force signals are ~ 20 to 80 times smaller than the normal force

signals.  Uncertainty in tip height will cause an error ∆RLEVER/RLEVER of ~∆HTIP/HTIP, and

uncertainty in laser spot position will cause an error of ~ XLASER / LL  if the laser spot is near

the end of the lever.

3.3 Spring Constant Estimates

An estimate of the response of a "V" lever has been made by treating it as a variable

width beam.  The curvature of a small solid element is proportional to the moment of torque

acting on it and inversely proportional to the product of the elastic modulus and the moment

of inertia around the bending axis12.  Using this approach for the lever, the curvature at a

distance x  from the base of the lever is

∂
∂

2

2

z x

x

F X x

EI x
Z TIP( ) ( )

( )
= ⋅ −

(3.17)

where the moment of inertia   I x xL L( ) ( )= 1
12

3W T  depends on the projected width of the lever

along the y axis.  Likewise the curvature due to lateral forces is

∂
∂
Θ( )

( )
x

x

F H

GI x
Y TIP= (3.18)

These expressions can be integrated analytically for each section and combined, matching

boundary conditions for continuity, to give g(x) and ∂f(x)/∂x along the lever.

This approach is similar to the “parallel beam approximation” (PBA) analyzed in

detail by Sader13.  Warmack et al.14 have also used this type of approach to analyze normal

deflections and the effects of cantilever buckling on AFM response.  Unlike Sader and

references therein, we also calculate torsional and buckling force constants, and explicitly

include the effect of the triangular “fillets” (a 10% effect for short levers) in the corners of

the central area cut-out of the “V” lever (Figure 3.2).  Our approach gives the same result



R.W. Carpick, “The Study of Contact, Adhesion and Friction at the Atomic Scale by Atomic
Force Microscopy”, Ph.D. Thesis, 1997.

44

as Sader’s first order solution for the solid triangle region at the end of the lever.  His

analysis shows that using the actual arm width, instead of the arm width projected in the y

direction, is a better approximation for the normal force constant.  Sader’s analysis also

shows that values for the normal force constant estimated by good PBA-type

approximations are within 10-20% of the results of a detailed finite element calculation.

The errors resulting from the approximations used in the force estimates are probably less

than the errors due to uncertainty in the physical properties of the lever (thickness, modulus,

tip height, metalization thickness, etc.).

The results of this calculation for a Park Scientific Instruments "F" lever that is

displayed in Figure 3.2 are shown in Figure 3.3, assuming an elastic modulus of 155 GPa

and a Poisson ratio of 0.27 for CVD silicon nitride5.  If the laser beam is positioned in the

center of the triangular region at the end of the lever, the estimated angular deflections

Figure 3.2  (a) A scanning electron micrograph of a gold coated Park Scientific

Instruments “F” cantilever.  The indicated dimensions are in micrometers.  (b) A

higher magnification view of the end of the lever, showing the position of the tip (at

the apex of the pyramid) relative to the lever.  The tip is off-axis by an amount close

to its nominal height of 3 micrometers, which is an additional source of coupling

between normal and lateral forces.
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produced by normal, lateral and buckling forces are 32.2, 1.26 and 1.99 µrad/nN,

respectively.  For this relatively short and stiff lever, the triangular fillets increase the normal

stiffness by ~10%.  Integrating the expressions for angular deflection a second time, we

obtain estimates for the force constants of 0.508, 132 and 209 N/m.  The nominal normal

force constant for the “F” lever is 0.50 N/m.  These calculation have not taken the tip offset

into account (Figure 3.2), nor the effect of the gold coating.

The sensitivity ratio RLEVER(x) is plotted in Figure 3.3(b).  This graph shows that

RLEVER is about 20% more sensitive to laser spot position for the "V" lever than for the

simple beam of the same length and tip height.  This is because the triangle at the end of the

"V" lever twists more than any other part, while most of the bending takes place near the

base of the cantilever, where the normal force lever moment is the greatest.

For any of these calculations, all the cantilever dimensions and the relevant moduli

of elasticity (Young’s modulus, shear modulus, Poisson’s ratio) are needed to calculate the

force constants.  The density is also needed to calculate the resonance frequency, which is a

useful comparison because the free resonance frequency of these cantilevers is typically

very easy to measure from the power spectrum of the cantilever’s thermal vibrations.  Such

a measurement reduces the number of unknowns in the calculations15.  In any event, the

dimensions of the cantilevers are not easy to measure (a good scanning electron microscope

is required, particularly to measure the sub-micrometer thickness of the cantilever which is a

critical parameter), and the elastic moduli and density of the cantilever materials are

uncertain.

3.4 Normal Force Calibration
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While these formulae and calculations are useful to obtain estimates of the forces

applied, clearly from the above discussion it is much more desirable to have an in-situ

method of directly measuring cantilever force constants.  Unfortunately, since the

microfabricated levers are so small, non-destructive in-situ testing is difficult.  Nonetheless,

some methods for calibration of the normal force constant have been successfully

implemented.  These include:  measuring deflections or resonance frequency shifts for

levers loaded with known masses16-18, and measuring the deflection of the cantilever when

in contact with another lever of known spring constant19,20.  Comparison of the cantilever’s

thermal noise with formulae can provide a calibration21 although measurements of the

cantilever’s properties are still required.  It is incorrect to use formulae which regard the

cantilever as a point mass on the end of a massless spring, as was done in one paper22.

Currently, most AFM work has estimated forces from calculations like those mentioned

above15, including the work discussed in this thesis.

(a)      (b)

Figure 3.3  (a) Calculated curves showing the variation in slope (in micro-radians)

along the length of the triangular region at the end of the cantilever shown in Figure

3.2 for a 1 nN normal or lateral force (lateral slope x10).  (b) The ratio of angular

deflections for this lever in response to normal and lateral forces, as a function of the

laser spot position.  A ~10 µm uncertainty in laser spot position will give a 20%

variation in measured friction coefficient.
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3.5 Lateral Force Wedge Calibration

In this section we describe an in-situ method of experimentally measuring the

combined response of the lateral force transducer (the cantilever/tip combination) and the

deflection sensor.  Our method is based on comparing lateral force signals on surfaces with

different slopes.  The known geometrical contribution to the total lateral force, i.e. the

product of the applied load and the tangent of the slope, gives a direct calibration of lateral

force response in terms of the normal force response.  If the normal force constant is

known, then completely quantitative friction measurements can be made.  Even if the normal

force constant is uncertain, the ratio of normal to lateral forces can be determined

quantitatively.  An experimental force calibration is made by sliding the tip across a surface

of known slope and measuring the lateral force signal as a function of applied load.

In principle, this could be carried out on any surface that is tilted with respect to the

lateral scanning direction.  In practice, this is difficult to realize because (a) if the surface is

tilted by the experimenter, there will be some uncertainty in the tilt angle, (b) we will show

that to accurately calibrate the lateral force response, two surfaces of different tilt angles

must be used and (c) it may not be possible to contact the tip to a tilted surface without the

surface touching the side of the cantilever chip or its holder, since microfabricated cantilever

tips are usually very short.

These problems are resolved by using the faceted SrTiO3 (305) surface proposed by

Sheiko et al.23 as a measure of tip sharpness.  When annealed in oxygen, SrTiO3 (305)

facets into a (101) and (103) planes which form extended ridges along the [010] direction.

The (101) and (103) planes are respectively tilted -14.0° and +12.5° with respect to the

original (305) surface.  The ridges are typically 5 to 20 nm high and are spaced 10 to 100

nm apart (Figure 3.4).  We thus have a test sample that provides two sloped surfaces with

exactly known relative angles.  Furthermore, as demonstrated by Sheiko et al., the top of the

SrTiO3 ridges are extremely sharp, and a topographic AFM scan over the ridge produces an
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image of the tip.  This is also quite important, as accurate knowledge of the tip shape is also

required for quantitative FFM experiments24.

The wedge method has some additional advantages.  It can be used to determine the

absolute orientation of the sample while confirming the microscope Z calibration.  Even

though the angle between the two SrTiO
3
(305) facets is known, the average surface normal

may be tilted by a small angle relative to the microscope Z axis.  Calibrating the AFM XY

displacement is usually not too difficult.  Crystal lattices can be used for nanometer scale

standards, and lithographically patterned standards work on the µm scale.  We calibrate Z

displacement in terms of XY displacement by making a topographic image of the SrTiO3

sample, and adjusting Z until the angle between the facets is 26.5°.  Now that XY and Z are

calibrated, the overall slope of the surface can be directly determined from the image (in

practice we solve for the slope and Z calibration simultaneously, see the appendix for

details).

To get an accurate force calibration with the wedge method, the tip must slide across

one facet for a reasonable distance before reaching the next facet or ridge crest.  This is not

possible unless 2Rtip sinθ is significantly smaller than the spacing between ridge crests.  It

(103) (101)

Figure 3.4  A 410 nm x 410 nm topographic AFM image (light shaded) of the

SrTiO3 surface showing (103) and (101) facets.  The apparent rounding of the ridge

crests is due to the ~40 nm radius of the AFM tip used for this image.  The widest

facets are used to measure lateral signals as a function of load for the cantilever lateral

force calibration.
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is difficult to calibrate tips with radii greater than ~ 100 nm even using the widest facets on

our SrTiO
3
 sample.  The procedure is straightforward for tip radii ~ 50 nm or less.  It may

be possible to prepare a similar sample with larger facets for calibrating blunt tips.

3.6 Wedge Calculations

The vector diagrams in Figure 3.5 show the forces acting on the end of the tip while

scanning up or down a sloped surface.  The two forces applied by the tip on the surface, the

vertical load L (down is positive) and the horizontal tractive force T (right is positive) must

be balanced by a reaction force from the surface acting on the tip.  This can be divided into

two components, a friction component Ff parallel to the surface and a second component N

normal to the surface.  When the tip slides across the surface, these forces are in

equilibrium.  At a given load, the tractive force, friction and normal forces depend on the

direction of motion, so

N L T± ±= ±cos sinθ θ (3.19)

F N T Lf ( ) cos sin± ±= θ θm (3.20)

scan direction

surface

θ

L

T+

scan direction

L

T-

Figure 3.5  Forces exerted on the surface by the AFM tip while scanning up or down

a sloped surface.
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In these equations ‘+’ denotes uphill motion and ‘-’ downhill motion.  N, L and T

are signed quantities, while Ff is the positive magnitude of the frictional force acting against

the direction of motion.

We experimentally measure the voltage output from the lateral force transducer To

where αTo = T (the ‘o’ subscript will be used to indicated a force measured in transducer

output volts rather than Newtons).  If we can find α (Newtons per volt) we have a direct

calibration of the lateral force response of the FFM.  The calibration constant α is a product

of all the factors of the experiment - the lever lateral force constant, the deflection of the

reflected laser beam as a function of lateral tip displacement, and the photodiode angular

sensitivity.  This method will work equally well for other types of lateral force transducers,

including optical interferometry and piezoresistive detection.

To solve the calibration problem we need a functional form for the frictional force

Ff(L).  This can be an empirical fit from measuring friction on a flat surface, or a theoretical

form from the Hertz or JKR theories24.  These shall be discussed in detail in Chapter 5.

Tip-surface adhesion usually has a significant effect on Ff (L) in FFM experiments.  When

friction is linearly dependent on load, adhesion is often treated as a force offset.  We find

experimentally that the friction-load relation for silicon or silicon nitride tips on the

strontium titanate surface in air is well represented by a linear form Ff (N±) = µ•(N±+A)

where A is the adhesion or pull-off force.  In this case

N
L A

+ = +
−
µ θ

θ µ θ
sin

cos sin
(3.21)

and

N
L A

− = −
+
µ θ

θ µ θ
sin

cos sin
(3.22)

Note that the normal force depends on the friction and on the direction of motion.
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On a flat surface, the “frictional force” is determined by taking half the difference

between the left-to-right and right-to-left lateral deflection forces, i.e. the half width of the

friction loop W(L).  In this case, since the surface is tilted, the effective load is direction-

dependent, and the expression for W(L) is more complicated.  Furthermore, the offset of the

friction loop ∆(L) is not zero and depends on load.  This is illustrated in Figure 3.6, where

bi-directional lateral force loops are drawn for flat, positively tilted, and negatively tilted

surfaces respectively and the measured quantities Wo and ∆o are indicated.

Experimentally, we measure lateral forces for a range of applied loads, and use the

slopes ∆´ ≡ ∂∆/∂L  and W´ ≡ ∂W/∂L in calculations, which are independent of L due to the
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Figure 3.6  Schematic “friction loops” (lateral signals for back and forth scans) for flat,

positively sloped and negatively sloped surfaces at the same applied load.  The

friction loop half-width W is slightly different for the three cases, while the loop offset

∆ is substantially different and is indicative of the overall tilt of each surface.  The

values of W and ∆ are measured over a range of applied loads for known slopes

and used to calibrate the lateral force response of the cantilever.
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assumption of linearity.  This eliminates the pull-off force from the equations, as well as any

DC offset in the lateral force sensor.  These slopes are given by:

α
µ θ θ
θ µ θ

′ = ′ =
+( )

−
∆ ∆o

1 2

2 2 2

sin cos

cos sin
(3.23)

and

α µ
θ µ θ

′ = ′ =
−

W Wo cos sin2 2 2 (3.24)

In the limiting cases of no friction, ∆´ → tanθ  and W´ → 0, and for no slope ∆´ → 0 and

W´ → µ as expected.  Using these two equations, we can calculate the tip-surface friction

coefficient and lateral force calibration constant.  The ratio of these expressions gives µ:

µ
µ θ

+ = ′
′

1 2
2

∆o

oW sin
(3.25)

From the form of this expression, there is an ambiguity in the problem, since µ and 1/µ are

equally good mathematical solutions which give different results for α.  This ambiguity may

be resolved by choosing the appropriate root using an estimate for α from the type of

calculation described in section 3.3, or if µ is known to be less than one.  Once µ is

determined, α can be found from the equations defining W´ or ∆´.  Experimentally, it is best

to solve for α using data from two different slopes, as discussed below.

3.7 Experimental Difficulties

In the ideal case the lateral force response of the cantilever and deflection sensor has

been calibrated.  However there can be significant “cross talk” between normal and lateral

cantilever deflections.  As discussed above, the response of the optical beam FFM deflection

sensor is 20-80 times greater for normal forces than for lateral forces.  In addition, the
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normal forces are often larger than the lateral forces.  A small misalignment of the laser or

cantilever with respect to the quadrant photodiode, for example a rotation of the photodiode

by ~ 2°, can mean that the normal force contribution to the lateral deflection output is as

large as the lateral force contribution.  In normal FFM experiments this problem is avoided

by measuring friction loop width, or W(L), since the “cross talk” primarily effects the

friction loop offset ∆(L).  Cross talk is a concern in the wedge calibration experiment since

the lateral force offset ∆(L) is important in the calibration calculation.

In our experiment, we compensate for the cross talk electronically, by adding or

subtracting a fraction of the normal force output from the lateral force output.  The

compensation is adjusted by taking an approach curve, or by oscillating the cantilever out of

contact with the surface, where there should be no “real” lateral forces, and adjusting the

compensation to null the lateral force output.  Such compensation is also available on some

commercial FFM electronics25.  Even with careful compensation, the residual cross talk

may be too large to neglect in the calibration calculations.

The effect of cross talk can be minimized by measuring ∆0´ and W0´ on the (103)

and (101) facets of the SrTiO3 surface and then using ∆0´(103)-∆0´(101), W0´(101)  and

W0´(103) for the calibration calculation.  These quantities all involve differences between

lateral signals for the same applied load, so cross talk has been subtracted out to first order.

The details of the two-slope calibration are given in the Appendix.

The above discussion has assumed that the applied load L is known.  Since the

direct experimental calibration of normal spring constants is also difficult, in some cases

only an experimental signal Lo proportional to the normal load, L = βLo, is known.  In this

case it is not possible to get the absolute lateral force calibration, but only

RDETECTOR•RLEVER(XLASER) = α/β. (3.26)

It is still possible to get the friction coefficient µ if friction is proportional to load, since on a

flat surface µ = RDETECTOR•RLEVER(XLASER)•To/Lo.  It is not sufficient to assume that the voltage
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applied to the Z piezo is proportional to load, since there are significant non-linearities in

piezo response, which depend on the speed and direction of displacement26-28.

3.8 Experimental Lever Calibration

For the following example, we have not calibrated the normal force constant of the

cantilever.  Therefore, we will actually take derivatives of the experimentally measured

quantities ∆0 and W0 with respect to L0, the experimental load signal in output Volts.  Thus,

∆0´ ≡ ∂∆/∂L0  and W´ ≡ ∂W/∂L0.  In this case, equations (3.23) and (3.24) become

α
β

µ θ θ
θ µ θ

⋅ ′ = ′ =
+( )

−
∆ ∆o

1 2

2 2 2

sin cos

cos sin
(3.27)

and

α
β

µ
θ µ θ

⋅ ′ = ′ =
−

W Wo cos sin2 2 2 (3.28)

 We have thus used the wedge calibration procedure described with our AFM to

measure α/β for cantilevers of three different nominal spring constants.  In this system the

laser beam is carried by a single-mode fiber and well-focused on the cantilever, so RDETECTOR

≈ 14.  The cantilevers are “V”-shaped silicon nitride “Sharpened Microlevers” from Park

Scientific Instruments29.  The levers are gold coated, and the pyramidal tips are etched back

to get a sharp tip with a nominal radius of ≈ 30 nm.  We made measurements on the “D ” ,

“E” and “F” levers which have nominal normal force constants 0.03, 0.10 and 0.50 N/m.

Two different E levers from the same wafer were analyzed.
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The SrTiO3 sample was aligned so that the ridges were perpendicular to the lateral

scanning direction.  The lateral and normal bending signals were recorded as the tip scanned

back and forth over both facets of a single ridge.  The feedback was active so that each line

scan across the sloped surface was recorded at the same externally applied load.  After each

line was recorded, the feedback set point (applied load) was increased under computer

control, and another line scan acquired.  256 line scans of 256 points were recorded in each

data set.  The average value of the subset of points for each facet was calculated for each

load.  Figure 3.7 shows an example of unprocessed data from a single line scan (friction
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Figure 3.7  Experimental lateral deflection signals To (1-2/A+B) measured on the

(101) and (103) facets of the SrTiO
3
(305) surface for each direction at a given load.

The simultaneously acquired topography (thick line) is also shown.  W(L) and ∆(L)

are calculated from this data.  The complete series of measurements over a range of

loads is shown in Figure 3.8.
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loop), showing the simultaneous topography and lateral deflection signals for both scanning

directions.

A plot of lateral force vs. load, obtained in this case with an E lever, is shown in

Figure 3.8.  Figure 3.8(a) shows the lateral bending signals (left-to-right and right-to-left)

plotted vs.  the normal bending signal for both facets.  Figure 3.8(b) shows the resulting

friction loop width and offset plotted vs.  the normal bending signal (load) for both facets,

with linear fits to the data.  As predicted in section 3.7, the slopes W0´(101) and W0´(103)

are similar, while ∆0´(101) and ∆0´(103)  reflect the change in sign of the tilt angle.  The data

deviates slightly from nonlinearity, although the linear fit results in at most a 3.5% statistical

uncertainty in the slopes for a given measurement.  A more complex fit than the simple

linear fit utilized could be slightly more accurate, but would complicate the method

substantially as equations (3.21) and beyond would need to be modified.

The two-slope wedge equations in the appendix were used to calculate α/β.  We did

not have a good experimental value for the lever normal force constant, so we report α/β

instead of the absolute lateral force response α.  The results are summarized in Table 3.1.

Figure 3.8 (following page)  (a) Lateral deflection signals for left-to-right and right-to-

left scanning directions (1-2/A+B) as a function of load deflection signal (A-B/A+B)

for the (101) and (103) facets.  The total A+B signal (photodiode current) was 185

µA.  (b) The friction loop width W(L) and offset ∆(L) as a function of load for the

(101) and (103) facets.  Straight lines fit the data very well, justifying our assumption

of linear friction behavior.  The slopes of each line are measured and used in

formulae given in the appendix to solve for α/β, the normal force to lateral force

deflection ratio.
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The α/β values are averages of several data sets, each acquired on a different ridge.

For comparison, the table includes the spring constants estimated by the method of section

3.6, and the value for RLEVER assuming that XLASER was located in the center of the solid

triangular region at the end of the lever (Figure 3.2).  Some data sets were recorded on

different days.  The error quoted is the statistical variation.  Since, for our instrument,

RDETECTOR ≈1, then from equation (3.26) , α/β ≈ RLEVER.  We see from the results that the

experimental α/β values are generally consistent with the RLEVER values estimated from

material properties, but the difference is not insignificant.  The experimental friction

coefficients tend to be slightly higher for the (103) facet of strontium titanate relative to the

(101) facets.  We noted more substantial variations in friction coefficients from day to day.

As mentioned, these experiments were carried out in air with no humidity control.  Friction

coefficients on other materials measured with AFM have been observed to vary with relative

humidity30,31.  This may partially account for the variation of friction coefficients observed.

Friction coefficients may also vary from lever to lever due to changes in tip radius.

There are some subtle experimental requirements for successful application of this

method.  As stated before, the method will fail if the tip is too blunt as the tip will always be

riding over the sharp ridges, instead of scanning on the facets.  Generally a tip radius of 50

nm or less is required.  Careful examination of the topographic image can verify if the tip is

sufficiently sharp.  Specifically, taking the numerical derivative of the topographic data

perpendicular to the SrTiO3 ridges will reveal if a constant slope is measured on the facets.

This is the signature of the tip’s contact with the flat facets as opposed to the sharp ridge.

Another problem can arise if the facet where one is scanning contains any

contamination or a step.  One can see in Figure 3.3 that the (101) facet often possesses

small steps which can be difficult to perceive. One muse acquire a topographic image first to

identify a locally flat pair of facets for the measurement.
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3.9 Error Analysis

We have considered the propagation of errors for this calibration method.  For a

given uncertainty in the experimentally measured slopes W0´(101), W0´(103), ∆0´(101), and

∆0´(103), the uncertainty in α/β  will  depend upon the value of µ on each facet.  µ

apparently changes for different tips and different relative humidities.  To facilitate this

analysis, let us assume that µ101 = µ103 ≡ µ.  In general it is expected that the uncertainty will

be smaller when µ is smaller since the measured signals are due more to geometry than

friction, and it is this geometrical coupling that is leading to the calibration.

In Figure 3.9, we graph the experimental error in α/β as a function of µ for 1%, 3%,

5% and 10% uncertainty in the slope measurements.  At low µ, the uncertainty approaches

Table 3.1  Experimental lever calibration results and estimates based on

calculations.

EXPERIMENTAL ESTIMATE

D

LEVER µ101 µ103 α/β RLEVER kNORMAL kLATERAL

D (0.03) .42±.10 .51±.09 51±6 61.6 .037 66.6

E#1 (0.1) .50±.05 .52±.05 43±3 39.4 .111 92.7

E#2 (0.1) .66±.14 .74±.12 36±4 39.4 .111 92.7

F (0.5) .33±.02 .41±.03 19±1 25.5 .508 132
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the fundamental limit, as expected.  The error diverges for large µ since the sensitivity to

geometry is overwhelmed by the friction signal.

This calculation indicates that low friction is clearly desirable for this calibration

method.  Furthermore, we see that errors become unreasonable for µ > 0.7.  For most of the

measurements performed, friction between tips and the SrTiO3 sample is generally low

enough for accurate measurements.  Future work should attempt to measure µ as a function

of relative humidity, to see which experimental conditions are optimal for the experiment.

3.10 Summary

We have demonstrated a quantitative method of lateral force calibration for the

microfabricated tip-cantilever assemblies used in friction force microscopy.  We find that

there are significant variations among cantilevers fabricated from the same wafer.  Tip

variations also play a role.  Furthermore, the overall system calibration depends on the

precise alignment of the deflection sensor where optical detection is used.
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Figure 3.9  Uncertainty in the measurement of α/β as a function of the friction

coefficient µ (for simplicity we assume that µ101 = µ103).  The error is calculated

assuming the measurement errors in W0´ and ∆0´ for both facets is 1%, 3%, 5% and

10% respectively.
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In order to perform quantitative frictional force microscopy with the atomic force

microscope, it is important to perform an experimental force calibration for each cantilever

sensor.

3.11 Appendix

3.11.1 Photodiode Response

An elliptical Gaussian beam has a normalized intensity distribution

Γ
∆ ∆

∆ ∆( , )y z e
y z

y z

y z=
− + −

2
2 22

2

2

2

π ω ω
ω ω (3.29)

Here ∆ω  is the angular half width of the field distribution, following the conventions of

Gaussian optics.  The half width of the intensity distribution is then ∆ω
2

.  If the beam is

deflected by d in the y direction, the signal is given by
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can be expanded around d = 0 by taking a derivative
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likewise higher derivatives can be calculated

d I

dd

d
e

y

d

y

2

2 2

2
4

2

2

=
−

∆
∆

ω
ω (3.33)



R.W. Carpick, “The Study of Contact, Adhesion and Friction at the Atomic Scale by Atomic
Force Microscopy”, Ph.D. Thesis, 1997.

62
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When these derivatives are evaluated at d = 0, the even terms vanish, as expected, since S(d)

is an odd function.  Finally we put these terms into a Taylor expansion and get
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3.11.2 Z Calibration and Tilt Measurement

A measurement of the apparent topography of the SrTiO3 sample slopes provides a

check of the relative Z:X piezo calibration, as well as determining the overall tilt of the

sample with respect to the scanning plane.  This is important because one must use the

actual physical angles between the sloped facets and the scanning plane in the wedge

calculations.

We assume that the X calibration of the piezo scanner is correct and that the initial Z

calibration is approximate.  We acquire a topographic image of the faceted strontium titanate

surface, with known facet angles of θ1 = -14.0° and θ2 = 12.5° relative to the (305) plane.

We wish to determine the correction factor γ for the Z calibration such that ZTRUE = γ •

ZINITIAL and the macroscopic tilt angle ψ of the (305) surface relative to the scanning plane,

projected onto the y-z plane.

From the image we measure the apparent slopes (∆Z/∆X) of the facets S1 and S2.

Then tan(θ1 + ψ) = γ • S1 and tan(θ2 + ψ) = γ • S2.  From this we make a quadratic equation
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γ1 2
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Solving for γ gives positive and negative solutions.  The positive solution is physically

reasonable:
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Then the tilt angle is easily calculated:  γ = tan-1(γ • S1) - θ1.

3.11.3 Two Slope Calibration

We wish to find the lateral force calibration α in terms of the experimentally measured

quantities W0´(101), W0´(103), ∆0´(101), and ∆0´(103).  This discussion assumes these

derivatives are taken with respect to the calibrated load L.  If the load is not calibrated, then

these derivatives are taken with respect to the load signal L0, and thus α is replaced by α/β

in equations (3.40) and (3.44).

Since the magnitude and offset of lateral force coupling is unknown, we use the

difference ∆0´(101) - ∆0´(103) in calculation.  The ratios of uncalibrated experimental values

should be equal to the ratios of the forces as calculated from geometry in section 3.6.

Therefore
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Here p and q are pure number ratios derived from experimental data such as that in Figure

3.8.  From (3.38) and the equations in section 3.6:

µ
κ θ

κ θ101

2 2
101

2
101

1 1 2

2
=

− + + sin

sin
(3.41)

κ µ
θ µ θ

≡
−

p 103
2

103 103
2 2

103cos sin
(3.42)

Here, θ101 and θ103 represent the physical angles of each facet with respect to the scanning

plane, i.e. θ101 = -14˚+ψ, and θ103 = 12.5˚+ψ.  

There is a also an ambiguity here between a friction coefficient and its reciprocal,

similar to the one slope solution of section 3.6.  We choose the quadratic roots giving µ < 1,

which gives calibration results consistent with the calculated lever properties.  Equation

(3.42) expresses µ101 in terms of µ103.  From (3.39),

2
1

2
1 1

2
103

103 103
101

101 101q
p

= + − +( )sin ( )sin
µ

µ θ
µ

µ θ (3.43)

Now we can substitute (3.41) and (3.42) into (3.43) to eliminate µ101.  As the resulting

expression is difficult to invert, we solve it numerically for the root such that 0 < µ103 < 1.

With this solution, we find the calibration

α µ
θ µ θ

=
′ −
1
103

103
2

103 103
2 2
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