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ABSTRACT
The contact between an atomic force microscope tip and a sample surface can form an ideal

single asperity of nanometer dimensions, where the interaction forces can be measured with sub-
nanoNewton force resolution. Studies of contact, adhesion and friction for these nano-asperities
have been carried out for a variety of tips and single crystal sample surfaces. The major result is
the observation of proportionality between friction and true contact area for a variety of
systems, and an impressive agreement with continuum mechanics models for contact area even at
the nanometer scale. The relevant continuum models can in fact be understood in the framework
of fracture mechanics.

INTRODUCTION
As devices shrink in size, the increased surface-to-volume ratio of the component materials

ensures that interfacial forces such as friction and adhesion can play dominant roles. This fact is
painfully appreciated by the designers of microelectromechanical systems (MEMS) who often
observe catastrophic failure of MEMS devices due to adhesion, friction and resultant wear.
Understanding these interfacial forces should allow such problems to be remedied, and
furthermore, the relative strength of these forces could potentially be exploited for specific micro-
and nano-scale device applications.

There is currently no fundamental theory that explains or predicts friction in general. At the
macroscopic level, it is almost universally observed that the friction force (FA) is linearly

proportional to the normal force or load (L):
Ff =U.L (1)

which defines the friction coefficient p. Eq. (1) is often referred to as Amonton's Law.
Macroscopic studies are generally hindered by the inevitable roughness of typical surfaces (fig.
1). A complex multitude of contact points at the interface ensures that the true contact area is
much smaller than the apparent contact area, and is nearly impossible to determine. Other
factors, such as wear, third-bodies and tribochemistry further complicate the matter.

The atomic force microscope (AFM) is an ideal tool with which to study contact and friction
in a fundamental way[l]. A tip, with typically 10-100 nm radius of curvature, is attached to a
compliant cantilever spring. At low applied loads, the tip can form a nanometer-scale single
contact point (an "asperity") with a variety of sample surfaces, thus providing a well-defined
interface (fig. 1). The cantilever deflections are recorded using, most commonly, a reflected
optical beam. These deflections are converted to forces by using Hooke's Law. In principle, the
normal and lateral forces can be measured with sub-nanoNewton precision, with sub-Angstrom
displacement precision. This tip is rastered over the surface using piezoelectric scanning tubes. In
practice, numerous issues such as cantilever calibration, non-linear piezoelectric scanning
components, thermal drift, and coupling of bending modes put limits on the accuracy of these
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Fig. 1. The typical surflace roughness cf
macroscopic interfaces ensures a complex multitude
of contact points (asperities). A scanning probe
instrument provides a well-defined single asperity
contact (the tip) where interaction forces can be
precisely measured with nanometer/atomic
resolution. At this scale, macroscopic physical laws
no longer apply. For example, the friction force (F,)
is no longer linearly proportional to the applied
load (L).

measurements. These issues have been discussed
previously[2] and will only be briefly mentioned
in this paper.

EXPERIMENT
The atomic force microscope used in these

experiments is described elsewhere[3]. It
operates in ultrahigh vacuum (UHV) to ensure
surface cleanliness. Chamber pressures were in
the 10-0 Torr regime or better. Experiments were
performed at room temperature. Microfabricated
cantilevers from commercial vendors were used.
Scanning electron microscopy measurements of
cantilever dimensions were combined with
continuum elasticity theory calculations to
estimate the normal force spring constants.
Lateral forces were calibrated with respect to the
normal forces using the "wedge calibration
technique"[2]. Briefly, the relative lateral-to-
normal force sensitivity ratio is experimentally
determined by observing the cantilever's bending
response on a tilted surface, i.e. by imposing a

geometrically determined lateral force.
The tip geometry was experimentally determined using "inverse imaging". By scanning the

tip in contact with a much sharper feature on the sample, the tip's profile can be determined.
This is accomplished by scanning the tip over the atomically-sharp facets of a SrTiO 3(305)
faceted surface[4,5], providing a tip cross-section. Unless otherwise noted, the tip was
determined to be paraboloidal. The influence of tip geometry is discussed in the next section.

A variety of interfaces were examined with this apparatus:
(1) A platinum-coated tip and a muscovite mica(0001) sample[4,6]. The 100 nm Pt coating

was deposited by sputtering onto a plasma-cleaned silicon nitride cantilever. Continuity of the Pt
coating was determined by measuring substantial contact conductance between the tip and a
conducting sample. Muscovite mica was cleaved inside the vacuum chamber just prior to the
experiment, producing large step-free regions for measurement.

(2) A silicon nitride tip and a muscovite mica(0001) sample. The tip and cantilever are
fabricated from low-stress LPCVD silicon nitride which is non-stoichiometric. These SiNx
cantilevers were used as-received from the vendor (Park Scientific Instruments, Sunnyvale CA).
Scanning Auger electron spectroscopy measurements indicate that the surface terminates in a
layer with appreciable oxygen content along with Si and N.

(3) A tungsten-carbide (WC) tip and a hydrogen-terminated diamond(1 11) single-crystal
sample[7]. The cantilever was fabricated from Si and coated with -20nm of WC (NT-MDT,
Moscow, Russia). Auger depth profiles indicated that the WC coating also contains oxygen. The
sample was a type II B diamond(1 11) single crystal (boron doped), saturated with hydrogen in a
plasma. Vacuum annealing was used to clean the sample, as described in detail elsewhere[8].
Topographic AFM imaging revealed that the diamond sample consists of flat islands -150-250 A
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Fig. 2. (a) 7.5 x 7.5 nm2 lateral force image of the mica(000l) surface. The fast scan direction is from left to
right. The black dots represent the repeat units of the mica lattice, whose periodicity coincides with the lateral
forces. (b) Line trace of the section indicated in (a). The lateral force exhibits "stick-slip" behavior, where the
lateral force builds up to some well-defined maximum value, and then quickly relaxes (first arrow). During the
relaxation, the tip slips by one unit cell. This behavior repeats itself with the lattice periodicity.

in diameter. A very sharp (1 x 1) LEED pattern was observed, indicating that the islands consist
of ordered diamond, which was also verified by previous AFM lattice-resolved imaging[8]. All
measurements were performed on these atomically flat islands. The hydrogen termination
produces an unreconstructed, passivated (non-reactive) surface.

RESULTS
Atomic-Scale Stick-Slip

Frequently, when an AFM tip is placed in contact with a crystalline sample and scanned
across it to generate a force map, atomic-scale periodicity is observed (fig. 2a)[9]. Lateral and
normal forces are observed to vary with the periodicity of the sample's lattice. This behavior has
been observed for a wide variety of tips and samples, and a wide range of experimental conditions
(liquid, ambient, controlled atmosphere, vacuum)[1]. When examined in detail (fig 2b), this
behavior is seen to result from discontinuous motion of the tip along the surface. As the lever is
continuously rastered across the sample, the tip traces out the sample's lattice through a regular
series of stick-slip events. Theories to explain this phenomena are under development and are not
the focus of this paper. We point out that, as seen in fig. 2b, there is a reproducible critical lateral
force at which the slip occurs. We are interested in understanding what physical parameters
determine this atomic-scale static friction force, Ff. To do this, we measure the average value of
this friction force at a given load, change the load slightly, then measure the friction again, and so
on. Typically we measure half of the difference between the average friction force obtained
scanning left-to-right and right-to-left, which greatly reduces signal offsets due to coupling of
bending modes and optical misalignment. Atomic-scale stick-slip was observed for both the
Pt/mica and SiNx/mica experiments. It was not observed for the WC/diamond experiment, but
this may have been due to the low friction forces for this interface, thus leaving the stick-slip
variation within the noise of the measurement.
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Fig. 3. Friction (circles) vs. externally applied load
for a Pt-coated tip in contact with mica in UHV. The
tip is initially loaded to -210 nN, then friction is
measured as the load is decreased. At -- 140 nN, the
tip pulls out of contact with the sample. The solid
line is the JKR prediction for the contact area vs.
load, scaled to fit the friction data.

Pt/Mica Interface: Friction vs. Load
Fig. 3 shows the variation of friction

(circles) with load for the Pt/mica interface,
measured with decreasing load. Friction is
clearly a non-linear function of load, in
contradiction with the macroscopic law of
Amonton [eq. (1)]. A substantial negative load
(called the pull-off force) must be applied to
separate the tip and sample, at which point
finite friction persists. This is an example of
the significant role that interfacial forces play in
small-scale contacts. In fig. 3, the friction data
is well fit by the Johnson-Kendall-Roberts
(JKR)[10] model (solid line) for the contact
area between adhesive elastic spheres, which is
equivalent to the contact geometry between a
paraboloidal tip and a flat plane.

The JKR model essentially balances the
elastic strain energy with the adhesive interfacial energy to determine the contact area. This model
can be derived using fracture mechanics concepts[11,12]. The contact is viewed as an external
circular crack in an otherwise infinite medium. The contact edge represents the crack front.
Loading and unloading the contact is viewed as propagating this crack (advancing or receding) in
mode I (normal separation). Griffith's concept of brittle fracture is used to balance strain energy
and interfacial energy to solve for the contact area as a function of load, as summarized
elsewhere[1 1]. The end result is a fairly simple, analytic equation:

A 3R7,R+ 2/3_ 2/3 (2)

where A is the contact area, R is the tip radius, y is the interfacial energy per unit area (also
known as the work of adhesion). E* is the reduced Young's modulus of the tip and sample
materials, given by

E* (-v 1
2 +l 2 (3)

where E2, E2 are the Young's moduli of the tip and sample respectively, and V], v2 the respective
Poisson's ratios. The JKR relation requires that the tip is paraboloidal. Inverse imaging, described
above, verifies that the tip is paraboloidal with a curvature radius of -140 nm.

Since the JKR contact area varies with load in almost exact proportion to the measured
friction, we postulate that

Ff = A (4)
where r is the interfacial shear strength. Eq. (4) thus represents the essential relation governing
friction for an elastic single asperity.

We further tested the validity of the JKR approach by deliberately altering the tip shape
through application of an extremely high load while sliding. A blunt, flat tip was produced in this
fashion, as verified by inverse imaging. The JKR prediction for contact area will obviously
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Table 1

interface YJ 2 T contact radius
interace _(mJ/m2) (MPa) @ L=O (nm)

Pt/mica 404 910 13.7

SiNx/mica 24 52 8.4

WC/Diamond 10 238 1.1

depend upon the tip geometry. We confirmed that the observed friction-load data was well fit by
a modified JKR model derived using an appropriately flat tip profile[4].

By using bulk values for the elastic constants (Emica = 56.5 GPa, Vmica = 0.098[13], Ept
177 GPa, vpt = 0.39[14]), we can solve for the contact radius at zero load, listed in Table 1. We
see that indeed the contact is of nanometer dimensions. Smaller contacts can be formed with
smaller tips and less strongly adhering materials. The JKR analysis also allows us to determine
both the interfacial energy (0) and the shear strength ('r) for this interface (Table 1). The values
quoted are for the maximum shear strength and adhesion energy observed for this system; a
gradual decrease of both of these ensued due to contact-induced changes in the tip chemistry, as
described elsewhere[6]. The adhesion energy (derived from the pull-off force) is relatively strong,
surpassing the van der Waals' energy by an order of magnitude. Likewise, the shear strength is
extremely large. The theoretical prediction for the shear strength of a crystalline material in the
absence of dislocations is given by -G/30[15] where G is the shear modulus. We can define an
"effective" interfacial shear modulus Geff = 2 GmicaGPt/(Gmica + Gpt) = 22.3 GPa. This gives,

for Pt/mica, T = Geff /25. The shear strength of this system is thus comparable to the ideal

material shear strength[16,17].
This surprising result remains to be fully explained. Recent theoretical modeling by Hurtado

and Kim[ 16,17] using dislocation mechanics suggests that below a critical contact size (in the nm
range), strongly adhered contacts should exhibit such ideal shear strengths. The strong attractive
forces may create a substantial degree of commensurability of the interfacial atoms, thus
producing an interface that is resistant to shear, as in a crystalline material. At this scale,
according to the theory, the contact is too small to allow the nucleation of even a single
dislocation at the contact edge. Dislocation nucleation is predicted to reduce the shear strength
substantially at larger scales. Experiments that test this model more thoroughly are desirable.

Limitations in Applying the JKR Theory
Although the JKR fits to the friction data presented above are convincing, our approach

contained the implicit assumption that the shear strength z was not dependent upon load. In fact,
load-dependent shear strengths have been observed, although only at larger scales and for
different materials[l18,19]. It would therefore be desirable to determine whether or not the shear
strength varies with load.

Furthermore, the JKR model is not a unique prediction for the behavior of a single
asperity[20]. The JKR model assumes that the interfacial attraction has zero spatial range; i.e. the
system gains energy only when the materials are in direct contact. This approach is reasonable
only for relatively compliant, strongly adhering materials exhibiting short-range attraction. Finite
range forces have been modeled by others[21,22], with the extreme opposite limit for stiff,
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weakly adhering materials with long-range forces described by the Derjaguin-Mtiller-Toporov
(DMT) theory[23]. Intermediate cases are treated by Maugis[22] using a Dugdale crack model.
Again, using a mode I fracture mechanics approach, this time with a constant adhesive stress
acting over afinite distance, Maugis provides an analytic solution that predicts the contact area
for the JKR and DMT limits, and for cases in between. Maugis' equations are relatively
complicated; a simplified form of the solution has been derived which facilitates fitting this model
to experimental data[24]. In any event, for these cases, the contact area varies with load in a
significantly different fashion compared with the JKR solution.

Finally, the JKR model assumes only normal loading, thus neglecting any possible effect that
the substantial applied lateral force has upon the contact area. Johnson[ 11] has combined the
Dugdale model of Maugis with interacting mode I, II and III fracture mechanics. This theory thus
includes the influence of the lateral force upon the contact area, and allows the interaction forces
to have a finite range. Using this finite range mixed-mode fracture approach, Johnson predicts
that the contact area can be reduced appreciably by partial slip at the contact edge which is
induced by the applied lateral force. According to this model, the shape of the area-load relation
still resembles the JKR curve, but with different (smaller) absolute values. The model also
predicts that the lateral force causes pull-off to occur at a smaller load compared to the direct
pull-off force (measured without sliding). This model can be tested with AFM by comparing the
direct and sliding pull-off forces. A statistical analysis was conducted for the Pt/mica system,
revealing an average reduction of the pull-off force by a factor of 0.89 due to sliding. Using this
result, the data presented in fig. 3 can be fit by this modified theory, resulting in an increase of
the shear strength by about 20% compared with the JKR fit. While the observed pull-off
reduction supports Johnson's model, it is not a direct verification that the contact area itself
changes due to sliding.

The above considerations make it clearly desirable to measure the contact area directly. Two
different methods to accomplish this are described in the following two sections.

SiNx/Mica Interface: Lateral Stiffness Measurements
Contact stiffness is defined as the amount of force per unit displacement required to

compress an elastic contact in a particular direction, has the units of N/m, and is essentially the
"spring constant" of the contact. Contact stiffness applies both for normal and lateral
displacements. The lateral contact stiffness of an axi-symmetric contact, kcontact, is in fact
directly proportional to the contact radius a, given by[25]:

kcontact = 8" G a (5)

where G*=[(2-vj)/G1+(2-v2)/G2 ]1l. Here G1 and G2 are the tip and sample shear moduli,
respectively. This convenient relationship holds for the JKR, DMT or intermediate regimes. It
requires that no interfacial slip occurs, thus low lateral forces must be used for the measurement.

In an AFM experiment, the contact stiffness resides in series with the lateral cantilever
stiffness. The typical lateral stiffness of commercial AFM cantilevers, klver, is around 50-200
N/m[2], which is of the same order as the lateral contact stiffness, kcontact, at the nanometer scale.
Thus, typical cantilevers can accurately measure variations in the lateral stiffness of nanometer-
sized contacts, i.e.

dFlateral (6) 1 + 1 (
dx k klever kcontact
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Fig. 4. Crosses: lateral stiffness (ktt ) vs. load data for
a SiNx tip on mica in UHV. Triangles: Ff vs. load,
acquired shortly after the stiffness measurement. Solid
lines: fits of the JKR model to both measurements.
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Fig. 5. Ff! k2,-,,,o, vs. load for the Si3N4 tip on mica
in UHV, calculated from the stiffness and friction data
in fig. 4.

where Flateral is the lateral force (cantilever torsion), and x is the lateral displacement.
The slope of the initial "sticking" portion of the tip-sample interaction during lateral sliding

(fig. 2b) corresponds to dFlateral/dX=ktot, the total lateral stiffness. To measure this slope
accurately, the relative lateral position between the cantilever base and the sample is sinusoidally
modulated with an amplitude of a few A which avoids slip even at low loads. A lock-in amplifier
is used to measure the amplitude of the lateral force response over a range of loads. The in-phase
response amplitude (dFlateral) divided by the amplitude of relative displacement (dx, determined
by accurately knowing the piezo response calibration) corresponds to the total lateral stiffness of
the system, ktt, eq. (6). Since kiever is constant, kcontact can be determined from this
measurement.

We have measured the variation of ktot with load for a SiNx cantilever and a mica sample in
UHV (fig. 4 - crosses). Indeed, a substantial variation with load is observed, due to the change in
contact area. The solid line shows that the JKR model, combined with eq. (5), describes this
variation quite accurately. Friction can also be measured as a function of load as described
previously (fig. 4 - triangles). Again, the JKR model fits the data very well. The shear strength
and adhesion energy for the interface, derived from the JKR fit, are listed in Table 1. For these
calculations, we used ESZN = 155 GPa, VSiN = 0.27[26]. A rather blunt paraboloidal tip of -260
nm radius was used for this experiment, as measured using inverse imaging.

We can verify that the shear strength is load-independent without relying on the JKR
analysis. We simply divide the friction measurement at each load by the square of the
corresponding contact stiffness measurement (which is proportional to the contact area). Using
eqs. (4) and (5), we find

Ff(L) _ -r -T(L)

kcontact(L) 64. (G*)2 <:r(L)
(7)

This quantity is plotted vs. load in fig. 5, where we see that indeed the shear strength is load-
independent over this range. Combined lateral stiffness and friction measurements can therefore
determine in detail the mechanical behavior of nanometer-scale interfaces.
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Fig. 6. The current measured through the tip-sample Fig. 7. Friction vs. load follows the same dependence
contact vs. load, at three different constant voltages, as that of contact conductance vs. load, and therefore
Note the accurate fit of the current to the DMT the same dependence as that of the DMT model,
continuum mechanics model, which is proportional showing that friction is proportional to the contact
to the contact area. area. The inset shows a typical force-distance curve

with the pull-off force in very good agreement with
the value obtained from the DMT fit.

Diamond and tungsten-carbide are important tribological materials. Both materials generally
exhibit very low friction. Diamond and diamond-like films are important coating materials used in
a wide variety of tools, hard disks, micro-machines and aerospace applications. Similarly,
tungsten-carbide plays an important role in several types of hard coatings. Diamond and
tungsten-carbide are two of the hardest, stiffest materials known, while the adhesive forces at the
interface are small due to the hydrogen passivation of the diamond surface and to the fact that
carbides are generally quite inert. These properties make the system under study an excellent
candidate to exhibit a DMT-like behavior for contact area versus load. The DMT solution for
contact area is given by[22]:

3R*) (L +2rRY)2 13  (8)A = ,r4E *

The lateral stiffness technique described previously is not expected to work well for these
materials, due to the expected low friction and high stiffness of the materials. Low friction allows
slip to take place during the lateral stiffness measurement, thus underestimating the lateral
stiffness response. Large elastic moduli lead to large values of kcontact which, as is apparent from
eq. (6), cannot be sensitively measured. Since the diamond sample is boron-doped and tungsten-
carbide is conductive, local contact conductance measurements can instead be performed as a
function of applied load to obtain independent information about the contact area. The nanometer
scale of the contact radius in AFM experiments means the total system conductance is limited by
the contact and not by the bulk conductance of tip or sample. In this limit, the contact
conductance becomes directly proportional to the contact area A. However, the proportionality
constant is difficult to determine, preventing absolute determination of A with this technique.
Nevertheless, at a fixed voltage, the current is always proportional to A for any current transport
mechanism[27]. Thus, it is possible to equate the variation in current at a constant voltage to the
variation in A; this relation is used in this work.

Using a sensitive current preamplifier, the load dependence of the current at several voltages
applied to the sample was measured using an 88 N/m cantilever (fig. 6). Current-voltage curves
revealed consistent semiconductor-like conductance at all loads, which indicates that the
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conductance mechanism was not affected by the applied stress. For all bias voltages, the current
vs. load data can be fit by the DMT model (solid lines). The DMT model provides an excellent
fit to the measured data and the pull-off force deduced from the fits is identical to 0.1 gtN
independently measured from the force-distance curves with the same lever. It is significant that
the fits at all voltages have the same pull-off force, which confirms that current is proportional to
contact area. These results show unambiguously that the load dependence of the contact area for
this single asperity interface can indeed be described by the DMT model. As seen in fig. 6, the
JKR model provides a poor fit to this data.

Friction measurements were performed using a 0.23 N/m cantilever to enhance the sensitivity
to frictional forces. The radius of curvature of the paraboloidal tip was found to be -1 10 nm
using inverse imaging, measured before and after tip-sample contact, thus no evidence of wear
was observed. Fig. 7 shows the results of frictional force measurements as a function of applied
load, which were reproducible at different locations on the sample. The data in fig. 7 were
obtained by decreasing the load from 12 nN to negative loads (unloading). Experiments when the
load was increased (loading) exhibited the same behavior as shown in fig. 7, indicating that the
deformation of the contact is elastic for the range of loads investigated. The data in fig. 7 can be
fit by the DMT model (solid line), treating both y and r as free parameters, demonstrating that
friction is proportional to A. The yand T were determined using Ediamond = 1164 GPa, Vdiamond =
0.08[28], Ewc= 714 GPa and vwc= 0.24[29]. As summarized in Table 1, the DMT fit results in a
pull-off force of-7.3 nN, an adhesion energy of 10 mJ/m2, and a shear strength of 238 MPa. The
contact radius is 1.1 nrm at zero applied load. No friction data for loads smaller than -2 nN could
be obtained due to a premature pull-off of the tip at negative loads. Premature pull-off is
frequently promoted by the tip-sample movement during scanning. Force-distance curves involve
less lateral movement and therefore provide a direct determination of the pull-off force. The
typical, reproducible result is shown in the inset of fig. 4, and the measured pull-off force of -7.3
nN is in excellent agreement with the value obtained from the DMT fit. Attempts to fit the JKR
model to our friction vs. load measurements produced strongly inconsistent fits.

For the WC/diamond interface, Geff = 380 GPa, so T'= Geftl 600. Thus, the shear strength is
relatively small in this case, especially in comparison to the Pt/mica interface. An ideal shear
strength in the range of G/30 requires a "crystalline" or commensurate interface. This suggests
that there may be very little commensurability for the WC/diamond interface, which is plausible
considering the high stiffness and weak adhesion of these materials. Further work is required to
verify this hypothesis.

We do not attribute the premature pull-off described above to the partial slip phenomenon
predicted by Johnson[1 1], as this effect is only significant for strongly adhered interfaces, van
den Oetelaar has measured strong adhesion and friction between a Si tip and the clean
diamond( 11) surface[30], and observed that partial slip occurs with high lateral force. This was
evident by a reduction of the lateral stiffness just prior to full slip.

CONCLUSIONS
Atomic force microscopy can accurately measure load, friction, contact area, stiffness,

conductance, adhesion energies, and shear strengths for nanometer-scale contacts. While careful
attention must be paid to instrumental issues such as calibration, tip shape, experimental
conditions and other instrumental artifacts, methods to address these issues have been developed
to quite reasonable extents. Using this instrumentation, we have verified that friction at the
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nanometer scale, for an elastic, single asperity contact, is directly proportional to the true contact
area. In other words, there appears to be a constant friction force per interfacial atom (the shear
strength). The constant shear strength indicates that the mechanism of energy dissipation for
these systems does not change in this range. Thus, the increase in friction with load is attributable
to the increase in contact area. This may not be so surprising given that the nominal stress is only
increasingly roughly as L1/3 (from the continuum models). New modes of energy dissipation,
resulting from inelastic processes, may activate at higher stresses[l]. For example, evidence of
tip-induced atomic-scale wear has been reported for alkali halide materials[3 1]. Pressure-activated
modes of energy dissipation are reported in organic thin films due to progressive molecular
deformation[32]. These examples represent stress-dependent increases in the number of energy
dissipation channels and are therefore manifested in increases in the shear strength compared with
purely elastic, wearless friction.

Fracture mechanics can be successfully utilized to derive continuum models that describe the
contact area (as well as stress distribution, contact profile etc.). Impressive agreement with these
continuum models is found, even at the nanometer scale. New continuum approaches to account
for the effect of lateral forces on a loaded contact (using mixed-mode fracture) and the mechanism
of slip (using dislocation mechanics) have been recently developed. In the AFM experiments,
different relations between contact area and load are observed for different pairs of materials. The
differences may also be correlated with the relative magnitude of the interfacial shear strength.
Shear strengths equivalent to the ideal material strength are observed in some cases (e.g. Pt/mica).
Nano-technology applications will require interfaces that either resist or facilitate shear,
depending on the specific application. Further understanding through studies such as these could
eventually allow control of these shear properties at the nanometer scale.
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