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The variation of contact area with load between adhesive elastic
pheres depends upon the effective range of attractive surface forces.
elatively simple forms to describe limiting cases exist, but the gen-

ral intermediate case requires a more complex analysis. Maugis,
sing a Dugdale model [D. Maugis, J. Colloid. Interf. Sci. 150, 243
1992)], provides an analytic solution, but the resulting equations are
umbersome if one wishes to compare with experimental data such as
tomic force microscope measurements. In this paper we present a
impler general equation that approximates Maugis’ solution ex-
remely closely. The general equation is amenable to conventional
urve fitting software routines and provides a rapid method of deter-
ining the value of the “transition parameter” which describes the

ange of surface forces. © 1999 Academic Press

Key Words: contact mechanics; contact area; adhesion; Dugdale
odel; adhesive spheres; atomic force microscope; friction force
icroscope; surface forces apparatus.

1. INTRODUCTION

An understanding of contact, adhesion, and friction betw
urfaces requires knowledge of the area of contact between
ontinuum models which predict the contact area for var
eometries have been worked out starting with the pione
ork of Hertz (1). Experimental techniques that measure co
rea for elastic single asperities, namely the surface forces
atus (SFA) (2, 3) and the atomic force microscope (AFM)
an be described by the geometry of contacting spheres (ap
mated as paraboloids). In the case of the AFM, one sp
epresents the sample, with an infinite radius of curvature, w
he other sphere represents the tip, which in many cases con
o a paraboloidal shape (5). In the absence of adhesion, the
odel has been shown to accurately describe the contac
etween elastic spheres (6). However, at small scales the su

o-bulk ratio becomes significant. Therefore, adhesion ar
rom attractive surface forces is generally not negligible and
e included in any description of contact area.
The spatial range over which surface forces act dep

pon the chemistry of the materials in contact, and may or
ot be long range compared to the scale of elastic deforma
ue to these forces (7) (Fig. 1). Two limiting cases are ap

1 Present address: Mailstop 1413, Sandia National Laboratories, Albu
ue, NM 87185-1413.
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nt. When the surface forces are short range in comparis
he elastic deformations they cause (i.e. compliant mate
trong adhesion forces, large tip radii), the contact are
escribed by the Johnson–Kendall–Roberts (JKR) mode
he opposite limit (i.e., stiff materials, weak adhesion for
mall tip radii) is referred to as the Derjaguin–Mu¨ller–Toporov
DMT) regime (9) and the form of the contact area is prese
n the work of Maugis2 (10). It is convenient to utilize
ondimensional physical parameter to quantify these limits
ases in between. Often referred to as Tabor’s parameterm, this
ransition parameter is defined as (11)

m 5 S16Rg2

9K2z0
3D 1/3

, [1]

herez0 is the equilibrium separation of the surfaces,R is the
ip curvature radius,g is the interfacial energy per unit ar
work of adhesion), andK is the combined elastic modulus
ip and sample, given byK 5 4/3 z ((1 2 n1

2)/E1 1 (1 2

2
2)/E2)21 whereE1 and E2 are the tip and sample Young
oduli, respectively, andn1 and n2 are the tip and samp
oisson ratios, respectively. The quantitym is in fact equal to

he ratio of the elastic deformation just before the surf
eparate to the equilibrium separationz0.
To approximate an actual interaction potential like that

icted in Fig. 1, Maugis (10) considers a “Dugdale” (squ
ell) potential to describe attractive forces between conta
pheres (Fig. 2), where a constant adhesive stresss0 acts ove
rangedt. Thus, the work of adhesion isg 5 s0 z dt. Maugis

efines a parameter,l, which is similar tom, given by

l 5 2s0S R

pgK2D 1/3

. [2]

y choosings0 to match the minimum adhesive stress o
ennard–Jones potential (with equilibrium separationz0), it

ollows thatdt 5 0.97z0, and sol 5 1.1570m. Thus,l andm
re roughly equivalent. For convenience we shall refer tol in

his paper as the “transition parameter.” Ifl . 5, the JKR

er-

2 As discussed by Greenwood (10), it is more appropriate to refer t
MT regime as the “Bradley limit,” which is a model for completely rig
pheres. Here we refer to “DMT” in a conventional sense, as with Maugi
0021-9797/99 $30.00
Copyright © 1999 by Academic Press
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396 CARPICK, OGLETREE, AND SALMERON
odel applies, and ifl , 0.1, the DMT model applies. Valu
etween 0.1 and 5 correspond to the “transition regime”

ween JKR and DMT. A summary of different conventio
sed for defining this “transition parameter” is provided
reenwood (11). The Hertz model applies when there ar
ttractive surface forces (g 5 0).

2. DEPENDENCE OF CONTACT AREA UPON LOAD
FOR THE JKR AND DMT REGIMES

The variation of contact area with load for various values ol,
nd for the Hertz model, is plotted in Fig. 3. In the non-z
dhesion cases, there is a well-defined “pull-off force” or neg
critical load” at which the surfaces separate when being p
part. This applies for the case of “fixed loads” where one o
pheres is attached to a compliant spring (as in the case of an
antilever). We shall refer to this negative critical load asLc, and
or the two limiting cases it is given by

Lc(JKR) 5 2
3

2
pgR [3a]

Lc(DMT) 5 22pgR. [3b]

FIG. 1. Interaction forces (per unit area) for the Hertz, JKR, and D
odels, compared to a realistic interaction. There is no attractive force
ertz model, only hard wall repulsion at contact. The JKR model incl
hort range adhesion which is essentially a delta function with strengthg and
hus acts only within the contact zone. The DMT curve shown represe
ong-range surface force. A volume integrated force, like the van der W
orce, can also lead to a DMT dependence, where the contact profile re
ertzian and the attractive forces act like an additional external load. F
ctual interaction force, the integral of the force–distance attractive
orresponds to the work of adhesion,g.

FIG. 2. The force–distance relation for the Dugdale model used
augis. A constant adhesive stress (force per unit area)s0 acts between th

urfaces over a rangedt. At greater separations, the attractive force is zero.
ork of adhesion is thusg 5 s0dt.
e-

no

o
e
d
e
M

he models also predict particular values for the contact ra
t zero loada0, given by

a0(JKR) 5 S6pgR2

K D 1/3

[4a]

a0(DMT) 5 S2pgR2

K D 1/3

. [4b]

The variation of contact radiusa with load L for the JKR
nd DMT cases are each described by relatively simple e

ions:

a

a0(JKR)
5 S1 1 Î1 2 L/Lc(JKR)

2 D 2/3

[5a]

a

a0(DMT)
5 ~1 2 L/Lc(DMT)!

1/3. [5b]

ince the tip is axially symmetric, the contact areaA is simply
iven by

A 5 pa2. [6]

It is apparent that Eqs. [5a] and [5b] can be generalize
orm an equation which describes the contact radius for
ases,

a

a0~a!
5 Sa 1 Î1 2 L/Lc(a)

1 1 a
D 2/3

, [7]

he
s

a
l’s
ins
an
ll

y

e

FIG. 3. The Hertz area–load curve, and the JKR–DMT transition, plotte
augis’ units (Eq. [9]). Area–load curves for the JKR limit, the DMT limit, a
n intermediate case are shown. These approach the Hertz curve in the limg3
(no adhesion). Adhesion increases the contact area from the Hertz cas

iven load by an amount dependent upon the range of attractive forces.
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397GENERAL CONTACT AREA EQUATION
herea 5 1 corresponds exactly to the JKR case, anda 5 0
orresponds exactly to the DMT case. Included in Eq. [7] is
act thatLc anda0 depend ona as well. We shall refer to E
7] as the generalized transition equation. We now show
or intermediate cases (0, a , 1), the generalized transitio
quation corresponds very closely to solutions for the trans
egime (0.1, l , 5) elegantly worked out by Maugis usi
he Dugdale model (10).

3. DEPENDENCE OF CONTACT AREA UPON LOAD
FOR THE MAUGIS–DUGDALE MODEL

Utilizing the Dugdale model is a reasonable method for
ating the value of the contact radius (and other quantities

unction of load. The solution is referred to as the “MD” solut
Maugis–Dugdale). Two equations are needed to relatea andL,

â2

2 F Îm2 2 1 1 ~m2 2 2!cos21S 1

mDG
1

4l2â

3 F Îm2 2 1 cos21S 1

mD 2 m 1 1G 5 1 [8a]

L̂ 5 â3 2 lâ2F Îm2 2 1 1 m2cos21S 1

mDG , [8b]

hereL̂ and â are simple parameterizations ofL anda,

L̂ 5
L

pgR
[9a]

â 5 a z S K

pgR2D 1/3

, [9b]

nd the parameterm represents the ratio between the con

FIG. 4. The MD solution (heavy black lines) and the generalized trans
quation, Eq. [7] (thin white lines), compared for four different values ofl. The
eneralized transition equation is plotted for values ofâ above the critical load
hile the MD solution includes the unstable lower branch of solutions.
e

at

n

i-
a

t

adius a and an outer radiusc at which the gap between t
urfaces reachesdt (i.e., where the adhesive stress no longer a
augis’ equations properly predict the JKR and DMT limits
The difficulty in utilizing the MD equations lies in the la

f a single expression relating onlya andL. To plot the MD
olution or fit it to data, one needs to simultaneously solve
8a] and [8b] by lettingm vary appropriately between limi
hich depend uponl. Furthermore, the relation for the pull-o

orce must be determined through iteration (12) if the valu
is not known a priori (the usual case with experime
easurements). In practice, this is rather cumbersome

mpossible to carry out with common software programs
tilize automated statistical fitting procedures.

4. COMPARISON OF THE MD SOLUTION AND THE
GENERALIZED TRANSITION EQUATION

In Fig. 4, we plot the MD solution for four different valu
f l. The generalized transition equation is overlaid, where
alue ofa in each case was optimized to provide the bes
ach pair of plots share identical values ofa0 andLc, respec

ively. For all values ofl, the difference between the gene
zed transition equation and the MD solution is less than
and less than 0.1% in most cases) for the relevant load re
urthermore, the generalized transition equation is exac

he JKR and DMT limits. Therefore, the generalized trans
quation is an excellent approximation to the MD solution.
ptimization ofa was performed by minimizing the integrat
quare deviation between the MD solution and the genera
ransition equation for the load range2uLc(a)u to 12uLc(a)u.
his load range was chosen because it is typical of the r
mployed in AFM measurements (4), where loads are kep

o avoid wear. The low load regime also exhibits the m
ubstantial curvature of thea vs Lrelationship in general, thu
aking fitting more reliable.

n

TABLE 1
Conversion Table between a and l and the Associated Values

of L̂c(l) and â0(l)

a l L̂c(l) â0(l)

MT: 0 0 22 Î3 2 5 1.260· ·
.074 0.1 21.951 1.336
.158 0.2 21.881 1.394
.256 0.4 21.816 1.442
.433 0.5 21.718 1.517
.609 0.8 21.634 1.598
.692 1.0 21.601 1.636
.817 1.5 21.556 1.700
.886 2.0 21.535 1.738
.922 2.5 21.523 1.760
.944 3.0 21.517 1.775
.958 3.5 21.513 1.785
.967 4.0 21.510 1.792
.979 5.0 21.506 1.800

KR: 1 ` 23/2 Î3 6 5 1.817· ·
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398 CARPICK, OGLETREE, AND SALMERON
Table 1 displays the optimized values ofa for various value
f l. An empirical formula was fit to this table of values
rovide a conversion equation froma to l (Fig. 5), which is
iven by

l 5 20.924z ln~1 2 1.02a!. [10]

ora . 1.0221 5 0.980, one can simply assume the JKR li
a 5 1). The steep slope asa approaches the JKR limit mea
larger uncertainty in determiningl from a value ofa in this

ange. Essentially this applies for values ofa greater tha
0.95 or equivalently for values ofl greater than;3. This is
ot problematic since the change in the contact radiusl
anges from 3 and up is reasonably small, apparent from
a of Maugis (10). In other words, a substantial uncertain
in this range doesnot lead to a correspondingly substan

ncertainty in the contact radius. The generalized trans
quation is therefore reliable for all values ofl, and Eq. [10
rovides a reasonable and simple conversion froma to l.

mportantly, the generalized transition equation does not i
uce any additional free parameters compared to the
olution.
Lc and a0 can be represented in Maugis’ nondimensio

nits given in Eqs. [9a] and [9b] as follows:

L̂c~l! 5
Lc

pgR
[11a]

â0~l! 5 a0 z S K

pgR2D 1/3

. [11b]

hese nondimensional values are uniquely determined b
alue ofl and are listed in Table 1 and plotted vsl in Figs. 6
nd 7, respectively. We have determined empirical equa

FIG. 5. Plot of l vs a from Table I (filled circles) and the empiric
onversion equation, Eq. [10] (solid line), fit to the data.
t

ig.
n

n

o-
D

l

he

ns

hat fit these values reasonably well (within;1% accuracy o
etter), which are also plotted in Figs. 6 and 7, respectiv

L̂c~l! 5 2
7

4
1

1

4
z S4.04 z l1.4 2 1

4.04 z l1.4 1 1D [12a]

â0~l! 5 1.541 0.279z S2.28 z l1.3 2 1

2.28 z l1.3 1 1D . [12b]

qs. [12a] and [12b] provide fast and simple ways of estim
ng L̂c(l) and â0(l). These quantities can instead be de

ined exactly from the MD equations using numerical m
ds if preferred.

5. FITTING PROCEDURE

The above discussion leads to the following procedure
urve fitting:

(1) Obtain a measurement of contact radiusa or friction Ff

s a function of load. For friction measurements, one m

FIG. 6. Plot of L̂c(l) vs l determined from the MD solution (fille
ircles), and an empirical fit, Eq. [12a] (solid line). The values ofL̂c(l) for the
KR and DMT limits are indicated by the dotted lines.

FIG. 7. Plot of â0(l) vsl determined from the MD solution (solid circle
nd an empirical fit, Eq. [12b] (solid line). The values ofâ0(l) for the JKR and
MT limits are indicated by the dotted lines.
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399GENERAL CONTACT AREA EQUATION
ssume that friction is directly proportional to the contact
Ff 5 t z pa2, where t is the constant interfacial she
trength) (4, 5). This is not expected to be true for mult
sperity contacts, or in the presence of wear (see Section

he case of friction measurements, replace all occurrencea
ith =Ff in the relevant equations and discussion below
(2) Use a curve fit optimization routine such as those a

ble in commercial software programs to fit the genera
ransition equation, Eq. [7], to the data, lettinga0, Lc, anda be
ree parameters whose values will then be extracted from
t. Alternately, measureLc independently from force–distan
urves (4) and constrainLc to this value for the fit. Be awa
hat occasionally the last data point before separation
liding friction measurement where the load is being decre
ay not correspond toLc if the tip and sample have prem

urely separated.
(3) Use the above conversion equation, Eq. [10], or

alues in Table 1, to determinel from the value ofa extracted
rom fitting the generalized transition equation.

(4) The interfacial energy,g, can now be determined. U
q. [12a] to solve forL̂c(l) now thatl is known. Plug this
alue into Eq. [11a] along with the value ofLc extracted from
he generalized transition equation fit to solve forg (this can be
one only if the tip radiusR is known). This can also be do
umerically using the MD equations.
(5) If measuring contact radius, the elastic modulus of

ontactK can be determined. Use Eq. [12b] to determine
alue of â0(l). Plug this value and the value ofa0 extracted
rom the generalized transition equation fit into Eq. [11b
etermineK. This requires knowingR and using the value o
determined above. This can also be done numerically u

he MD equations.
(6) If measuring friction instead of contact radius, de
ine t by usingt 5 F0/pa0

2, whereF0 is extracted from th
eneralized transition equation fit, anda0 is determined b
ombining Eqs. [12b] and [11b]. This requires knowing va
or R andK.

6. DISCUSSION

One must be careful in utilizing the generalized transi
quation for the case of friction measurements since it ass
irect proportionality between friction and contact area
eneral, SFA, AFM or other measurements where this m
an be applied require elastic, single-asperity contacts. T
eadily determined in the case of SFA, where the smooth
heets ensure a single contact, and optical measuremen
eveal if wear is occurring (13). More care is required w
FM measurements. Tip shapes must be characterized t

fy that they consist of a single, well-defined parabolo
rotrusion (4, 5). Loads must be kept low to avoid w
specially since atomic-scale wear may not be readily vi
ith standard AFM imaging capabilities (4).
The study of nanometer-scale single asperity contacts i

elatively new, and it is not certain that friction and con
a

e
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f
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er-
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till
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rea will always be directly proportional even in the ela
ingle asperity regime. For example, there could be a sig
ant pressure dependence of the shear strengtht, or a signifi-
ant change in the contact area due to the presence of
orces, as opposed to purely normal forces. The latter issu
een discussed in further detail by Johnson (14). Facile
arison of friction data with the generalized transition equa
ould help to elucidate deviations due to these effects
eneral, experiments where both contact area and frictio
easured are ideal for such purposes (12, 15, 16).
Although the generalized transition equation is an ex

ent approximation for the MD solution, it is important
onsider that the MD solution is exact for anidealized
odel potential.A more physically realistic potential is th
ennard–Jones potential, but this can be solved only nu

cally. Greenwood has performed this calculation for c
acting spheres (11). At this point the limits of continu
olutions become apparent. It is not clear exactly whe
efine the edge of the contact zone, i.e., the contact ra
or real materials, the contact zone edge corresponds
oint where interfacial bonds are no longer formed. I
ontinuum model, one can define it to be where the
etween the continuum surfaces first displays an infini
al increase, or possibly somewhere further out from

enter of the contact zone. For parameters in a typical A
ontact, one may need to span radially outward a
anometers to find a change in the gap of only 1 Å (i.e., less

han an atomic bond length). Continuum mechanics ca
ddress such a question in an exact fashion when the
istic nature of the materials must dominate. Therefore,
ossible that the MD solution for the contact radius is no
ccurate prediction for real materials at nanometer le
cales. Johnson, for example, has proposed an altern
ased on the MD model (12, 14) which closely resem
reenwood’s result. The only way to test all of this is
ompare experimental measurements with the MD mo
ohnson’s, and others. The generalized transition equ
acilitates this. A simple analytic equation for Johnson’s
reenwood’s models analogous to the generalized trans
quation would be useful.
In summary, we have provided a simple analytic equa
hich can be used to fit the contact radius (or friction) a

unction of load to scanning probe measurements and o
he difference between this generalized transition equatio

he MD solution is insignificant. A table of values and
mpirical equation to determine the transition parametl

rom the generalized transition equation parametera is pro-
ided. This approach requires a parabolic tip, a flat sample
earless elastic interactions. Application of the genera

ransition equation to friction or contact radius data can
dentify the accuracy of particular continuum models to
cribe the contact radius for nanometer scale contacts
thers.
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