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The variation of contact area with load between adhesive elastic
spheres depends upon the effective range of attractive surface forces.
Relatively simple forms to describe limiting cases exist, but the gen-
eral intermediate case requires a more complex analysis. Maugis,
using a Dugdale model [D. Maugis, J. Colloid. Interf. Sci. 150, 243
(1992)], provides an analytic solution, but the resulting equations are
cumbersome if one wishes to compare with experimental data such as
atomic force microscope measurements. In this paper we present a
simpler general equation that approximates Maugis’ solution ex-
tremely closely. The general equation is amenable to conventional
curve fitting software routines and provides a rapid method of deter-

ent. When the surface forces are short range in comparison
the elastic deformations they cause (i.e. compliant material
strong adhesion forces, large tip radii), the contact area |
described by the Johnson—Kendall-Roberts (JKR) model (8
The opposite limit (i.e., stiff materials, weak adhesion forces
small tip radii) is referred to as the Derjaguin=Nés—Toporov
(DMT) regime (9) and the form of the contact area is presente
in the work of Maugi$ (10). It is convenient to utilize a
nondimensional physical parameter to quantify these limits an
cases in between. Often referred to as Tabor’s paramethis
transition parameter is defined as (11)

mining the value of the “transition parameter” which describes the
range of surface forces. © 1999 Academic Press
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wherez, is the equilibrium separation of the surfacBss the
tip curvature radiusy is the interfacial energy per unit area
(work of adhesion), ani is the combined elastic modulus of
tip and sample, given biX = 4/3 - ((1 — v9)/E; + (1 —

An understanding of contact, adhesion, and friction betweeB)/E,) ! whereE, andE, are the tip and sample Young’s
surfaces requires knowledge of the area of contact between thamoduli, respectively, and;, and v, are the tip and sample
Continuum models which predict the contact area for vario®isson ratios, respectively. The quaniitys in fact equal to
geometries have been worked out starting with the pioneerithge ratio of the elastic deformation just before the surface
work of Hertz (1). Experimental techniques that measure contaelparate to the equilibrium separatinn
area for elastic single asperities, namely the surface forces appaFo approximate an actual interaction potential like that de:
ratus (SFA) (2, 3) and the atomic force microscope (AFM) (4picted in Fig. 1, Maugis (10) considers a “Dugdale” (square
can be described by the geometry of contacting spheres (appieetl) potential to describe attractive forces between contactin
imated as paraboloids). In the case of the AFM, one sphejgheres (Fig. 2), where a constant adhesive strgssts over
represents the sample, with an infinite radius of curvature, whideranges,. Thus, the work of adhesion ig = o - §,. Maugis
the other sphere represents the tip, which in many cases confogefines a parametek, which is similar tow, given by
to a paraboloidal shape (5). In the absence of adhesion, the Hertz
model has been shown to accurately describe the contact area
between elastic spheres (6). However, at small scales the surface-
to-bulk ratio becomes significant. Therefore, adhesion arising
from attractive surface forces is generally not negligible and mqggc,
be included in any description of contact area.

1. INTRODUCTION

R 13
A= 20_0<7T'YK2> . [2]

choosingo, to match the minimum adhesive stress of a

Lennard—Jones potential (with equilibrium separatg, it
The spatial range over which surface forces act depeq%%ows thats. = 8 97z an(d SOM E 1.157Qx ThFl)JS )\?I?lldu
t . 01 — . . y

upon the chemistry of the materials in contact, and may or may, roughly equivalent. For convenience we shall refex i
not be long range compared to the scale of elastic deformatiqﬂrss paper as the “transition parameter.”Nf> 5, the JKR
due to these forces (7) (Fig. 1). Two limiting cases are appar- ' ’

2 As discussed by Greenwood (10), it is more appropriate to refer to th
1 Present address: Mailstop 1413, Sandia National Laboratories, AlouquBMT regime as the “Bradley limit,” which is a model for completely rigid
que, NM 87185-1413. spheres. Here we refer to “DMT” in a conventional sense, as with Maugis (9)
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FIG. 1. Interaction forces (per unit area) for the Hertz, JKR, and DMT
models, compared to a realistic interaction. There is no attractive force in the
Hertz model, only hard wall repulsion at contact. The JKR model includes
short range adhesion which is essentially a delta function with strengtid
thus acts only within the contact zone. The DMT curve shown represents a
long-range surface force. A volume integrated force, like the van der Waal's ¢
force, can also lead to a DMT dependence, where the contact profile remains L=/ n
Hertzian and the attractive forces act like an additional external load. For an : Hertz
actual interaction force, the integral of the force—distance attractive well
corresponds to the work of adhesion,

contact area/mt

=

-2 -1 0 1 2 3

Load
model applies, and i < 0.1, the DMT m‘?del "’ipp"es' \,/alu?s FIG. 3. The Hertz area—load curve, and the JKR-DMT transition, plotted in
between 0.1 and 5 correspond to the “transition regime bﬂéugis’ units (Eq. [9]). Area—load curves for the JKR limit, the DMT limit, and
tween JKR and DMT. A summary of different conventiongn intermediate case are shown. These approach the Hertz curve in the-imit
used for defining this “transition parameter” is provided b9 (no adhesion). Adhesion increases the contact area from the Hertz case fo
Greenwood (11)_ The Hertz model applies when there are $jgen load by an amount dependent upon the range of attractive forces.
attractive surface forcegy (= 0).

The models also predict particular values for the contact radit
at zero loada,, given by

2. DEPENDENCE OF CONTACT AREA UPON LOAD
FOR THE JKR AND DMT REGIMES

The variation of contact area with load for various values,of 6myR?\ ?
and for the Hertz model, is plotted in Fig. 3. In the non-zero Ag(akRr) = (K> [4a]
adhesion cases, there is a well-defined “pull-off force” or negative
“critical load” at which the surfaces separate when being pulled 2myR?\ 13
apart. This applies for the case of “fixed loads” where one of the Qopmm) = (K) . (4]

spheres is attached to a compliant spring (as in the case of an AFM
cantilever). We shall refer to this negative critical load_gsand

L i The variation of contact radiug with load L for the JKR
for the two limiting cases it is given by

and DMT cases are each described by relatively simple equ

3 tions:
Leokry = — 35 YR [3a]
c 2 a _ (1 + \’%) 23 s
Leovn = —27yR. [3b] Ao(IkR) 2
=(1-L/L 1, 5b
force A aO(DMT) ( c(DMT)) [ ]
area
Since the tip is axially symmetric, the contact afes simply
given by
Z,| O

| A = ma’

(6]

o

U():li

FIG. 2.

Gt It is apparent that Egs. [5a] and [5b] can be generalized t

form an equation which describes the contact radius for bot
cases,

The force—distance relation for the Dugdale model used by
Maugis. A constant adhesive stress (force per unit argacts between the

surfaces over a randge At greater separations, the attractive force is zero. The -
work of adhesion is thuy = 8.

[7]

a  [(a+ 1 - LiLgy\™”
1+« ’

Qo)



GENERAL CONTACT AREA EQUATION

wherea = 1 corresponds exactly to the JKR case, and 0

397

TABLE 1

corresponds exactly to the DMT case. Included in Eq. [7] is th€onversion Table between « and N and the Associated Values

fact thatL, anda, depend orx as well. We shall refer to Eq.

[7] as the generalized transition equation. We now show that
for intermediate cases @ «a < 1), the generalized transition
equation corresponds very closely to solutions for the transitigg, . 0
regime (0.1< A < 5) elegantly worked out by Maugis usingg g74

the Dugdale model (10).

3. DEPENDENCE OF CONTACT AREA UPON LOAD
FOR THE MAUGIS-DUGDALE MODEL

0.817

Utilizing the Dugdale model is a reasonable method for estggg
mating the value of the contact radius (and other quantities) as.@2
function of load. The solution is referred to as the “MD” solutiorf-944

(Maugis—Dugdale). Two equations are needed to relaedL,

\&?

[ Jm? = 1+ (m? - 2)cosl(;>]

4)\%a 1
— [ ym* =1 cos‘l<) -m+ 1] =1 [84q]
3 m
~ 1
L=2a- )\é\z[ ymt — 1+ mzcosl(m>] , [8b]

wherel anda are simple parameterizations bfanda,

[ L
R

K 1/3

[9a]

a»

[9b]

of L.(\) and &,(\)

A L) (M)
-2 32 = 1.260- - -
0.1 -1.951 1.336
0.158 0.2 -1.881 1.394
0.256 0.4 -1.816 1.442
0.433 0.5 -1.718 1.517
0.609 0.8 -1.634 1.598
0.692 1.0 -1.601 1.636
1.5 -1.556 1.700
2.0 -1.535 1.738
25 -1.523 1.760
3.0 -1.517 1.775
0.958 3.5 -1.513 1.785
0.967 4.0 -1510 1.792
0.979 5.0 -1.506 1.800
JKR: 1 % -3/2 J6 = 1817 -

radiusa and an outer radius at which the gap between the
surfaces reachés (i.e., where the adhesive stress no longer acts
Maugis’ equations properly predict the JKR and DMT limits.

The difficulty in utilizing the MD equations lies in the lack
of a single expression relating ondyandL. To plot the MD
solution or fit it to data, one needs to simultaneously solve Eq:
[8a] and [8b] by lettingm vary appropriately between limits
which depend upon. Furthermore, the relation for the pull-off
force must be determined through iteration (12) if the value o
A is not known a priori (the usual case with experimental
measurements). In practice, this is rather cumbersome if n
impossible to carry out with common software programs tha
utilize automated statistical fitting procedures.

and the parametem represents the ratio between the contact , ~ovPARISON OF THE MD SOLUTION AND THE

25 T T T

radius (&)

. 1 ih i , W8 1 L -
2 4 0 1 2 3

load (L)

FIG. 4. The MD solution (heavy black lines) and the generalized transiti

equation, Eq. [7] (thin white lines), compared for four different valuea.cfhe

GENERALIZED TRANSITION EQUATION

In Fig. 4, we plot the MD solution for four different values
of A. The generalized transition equation is overlaid, where th
value ofa in each case was optimized to provide the best fit
Each pair of plots share identical valuesagfandL ., respec-
tively. For all values ofA, the difference between the general-
ized transition equation and the MD solution is less than 1%
(and less than 0.1% in most cases) for the relevant load regim
Furthermore, the generalized transition equation is exact fc
the JKR and DMT limits. Therefore, the generalized transitior
equation is an excellent approximation to the MD solution. The
optimization ofa was performed by minimizing the integrated
square deviation between the MD solution and the generalize
transition equation for the load range|L | t0 +2|Lgl.
This load range was chosen because it is typical of the ranc

0employed in AFM measurements (4), where loads are kept loy
{b avoid wear. The low load regime also exhibits the mos

generalized transition equation is plotted for valued above the critical load, SUbstantial curvature of thevs Lrelationship in general, thus

while the MD solution includes the unstable lower branch of solutions.

making fitting more reliable.
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[ W) e b e e By g 0 )y FIG. 6. Plot of L(\) vs A determined from the MD solution (filled
0 02 04 06 08 1 circles), and an empirical fit, Eq. [12a] (solid line). The value& gi) for the
o JKR and DMT limits are indicated by the dotted lines.

FIG. 5. Plot of A vs a from Table | (filled circles) and the empirical

conversion equation, Eq. [10] (solid line), fit to the data. that fit these values reasonably well (withil% accuracy or

better), which are also plotted in Figs. 6 and 7, respectively:

Table 1 displays the optimized valuesmofor various values

- . . - 7 1 [4.04-A"-1
of A. An empirical formula was fit to this table of values to LN =—+ | [12a]
provide a conversion equation fromto A (Fig. 5), which is 4 4 \4.04-27+1
given by 2.28-A% -1

A= —0.924-In(1 - 1.02a). [10]

Egs. [12a] and [12b] provide fast and simple ways of estimat
Fora > 1.02 1 = 0.980, one can simply assume the JKR limiing L,(A) and &,(1). These quantities can instead be deter-
(a = 1). The steep slope asapproaches the JKR limit meangmnined exactly from the MD equations using numerical meth:
a larger uncertainty in determiningfrom a value ofw in this  ods if preferred.
range. Essentially this applies for values @fgreater than
~0.95 or equivalently for values of greater than-3. This is 5. FITTING PROCEDURE
not problematic since the change in the contact radiug as . ] )
ranges from 3 and up is reasonably small, apparent from Fig_The gt_aove discussion leads to the following procedure fo
5a of Maugis (10). In other words, a substantial uncertainty fiirve fitting:

A in this range doesot lead to a correspondingly substantial (1) Optain a measurement of contact radiusr friction F;

uncertainty in the contact radius. The generalized transitigg a function of load. For friction measurements, one mus
equation is therefore reliable for all valuesafand Eq. [10]

provides a reasonable and simple conversion fi@no A.

Importantly, the generalized transition equation does not intro- 2
duce any additional free parameters compared to the MD JKR
solution. |

L. anda, can be represented in Maugis’ nondimensional
units given in Egs. [9a] and [9b] as follows:

. L,
LV = n [11a]
K 1/3
éo()\)=a0-<ﬂ_yR2> : [11D] y Lt SRR L L
01 1 10
A

These nondlmenspnal \{alues are umquely dete.rmlned by thEIG. 7. Plotoféy(A) vs A determined from the MD solution (solid circles)
value ofA and are listed in Table 1 anq plotted )\I$I’l Figs. 6 _and an empirical fit, Eq. [12b] (solid line). The valuesigf)) for the JKR and
and 7, respectively. We have determined empirical equatioD@T limits are indicated by the dotted lines.
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assume that friction is directly proportional to the contact ar@aea will always be directly proportional even in the elastic
(F, = 7 - ma® where 7 is the constant interfacial shearsingle asperity regime. For example, there could be a signif
strength) (4, 5). This is not expected to be true for multipleant pressure dependence of the shear strengtha signifi-
asperity contacts, or in the presence of wear (see Section 6)céimt change in the contact area due to the presence of late
the case of friction measurements, replace all occurrencas gbrces, as opposed to purely normal forces. The latter issue h
with V'Fy in the relevant equations and discussion below. heen discussed in further detail by Johnson (14). Facile con
(2) Use a curve fit optimization routine such as those avajiarison of friction data with the generalized transition equatior
able in commercial software programs to fit the generalizgdyiq nhelp to elucidate deviations due to these effects. |

transition equation, Eq. [7], to the data, lettiag L., anda be  general, experiments where both contact area and friction a
free parameters whose values will then be extracted from asured are ideal for such purposes (12, 15, 16).

fit. Alternately, measurk . independently from force—distance Although the generalized transition equation is an excel

curves (4) and constrail, to this value for the fit. Be aware lent approximation for the MD solution, it is important to
that occasionally the last data point before separation incg '

L o . ; dﬁsider that the MD solution is exact for adealized
sliding friction measurement where the load is being decrease . i e o
model potential A more physically realistic potential is the

may n rr n if the tip an mple have prema- . .
ay not correspond @, if the tip and sample have pre aLennard—Jones potential, but this can be solved only nume

turely separated. . . .
(3) Use the above conversion equation, Eq. [10], or ﬂVéally. Greenwood has performed this calculation for con-

values in Table 1, to determinefrom the value ofx extracted tactiqg spheres (11). At this pgint the limits of continuum
from fitting the generalized transition equation. solytlons become apparent. It is not plear exactly Where. t
(4) The interfacial energyy, can now be determined. usedefine the edgle of the contact zone, i.e., the contact radiu
Eq. [12a] to solve forl(\) now thatA is known. Plug this For real materials, the contact zone edge corresponds to t
value into Eq. [11a] along with the value bf extracted from Point where interfacial bonds are no longer formed. In &
the generalized transition equation fit to solvefdthis can be continuum model, one can define it to be where the ga
done only if the tip radiu® is known). This can also be donebetween the continuum surfaces first displays an infinitesi
numerically using the MD equations. mal increase, or possibly somewhere further out from the
(5) If measuring contact radius, the elastic modulus of theenter of the contact zone. For parameters in a typical AFN
contactK can be determined. Use Eq. [12b] to determine thmntact, one may need to span radially outward a fev
value of&,()). Plug this value and the value af, extracted nanometers to find a change in the gap ofyohlA (i.e., less
from the generalized transition equation fit into Eqg. [11b] tthan an atomic bond length). Continuum mechanics cannc
determineK. This requires knowingr and using the value of address such a question in an exact fashion when the at
y determined above. This can also be done numerically usifigstic nature of the materials must dominate. Therefore, it i
the MD equations. possible that the MD solution for the contact radius is not ar
(6) If measuring friction instead of contact radius, detezccurate prediction for real materials at nanometer lengt
mine 7 by usingT = Fo/mag, whereF, is extracted from the gcales. Johnson, for example, has proposed an alternati
generalized transition equation fit, ag is determined by pssed on the MD model (12, 14) which closely resemble:
combining Egs. [12b] and [11b]. This requires knowing valug§ eenwood’s result. The only way to test all of this is to
for R andK. compare experimental measurements with the MD mode
Johnson’s, and others. The generalized transition equatic
facilitates this. A simple analytic equation for Johnson’s or
One must be careful in utilizing the generalized transitioﬁreenwood s models analogous to the generalized transitic

) . . . eguation would be useful.
equation for the case of friction measurements since it assum . . . .
n summary, we have provided a simple analytic equatior

direct proportionality between friction and contact area. Inh. h b d to fit th tact radi Fricti )
general, SFA, AFM or other measurements where this modg'ch can be used fo hit the contact radius (or friction) as :

can be applied require elastic, single-asperity contacts. Thid4gction of load to scanning probe measurements and other
readily determined in the case of SFA, where the smooth mikg€ difference between this generalized transition equation ar
sheets ensure a single contact, and optical measurementst@&nMD solution is insignificant. A table of values and an
reveal if wear is occurring (13). More care is required wit§Mpirical equation to determine the transition parameter
AFM measurements. Tip shapes must be characterized to @M the generalized transition equation parametés pro-
ify that they consist of a single, well-defined paraboloidafided. This approach requires a parabolic tip, a flat sample, ar
protrusion (4, 5). Loads must be kept low to avoid weawearless elastic interactions. Application of the generalize
especially since atomic-scale wear may not be readily visigkansition equation to friction or contact radius data can helj
with standard AFM imaging capabilities (4). identify the accuracy of particular continuum models to de-
The study of nanometer-scale single asperity contacts is ssidiribe the contact radius for nanometer scale contacts a
relatively new, and it is not certain that friction and contaatthers.

6. DISCUSSION
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