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Abstract A numerical finite element contact model is

developed to make use of the high precision surface

topography data obtained at the nanoscale by atomic force

microscopy or other imaging techniques while minimizing

computational complexity. The model uses degrees of

freedom that are normal to the surface, and uses the Bous-

sinesq solution to relate the normal load to the long-range

surface displacement response. The model for contact

between two rough surfaces is developed in a step-by-step

manner, taking into account the far-field effects of the loads

developed at asperities that have come to contact in previous

steps. Method accuracy is verified by comparison to simple

test cases with well-defined analytical solutions. Agreement

was found to be within 1 % for a wide range of practical

loads for the high precision models. Applicability of

extrapolation from lower precision models is presented. The

real contact area estimates for micrometer-size tribology

test machine surfaces are calculated and convergence

behavior with mesh refinement is investigated.

Keywords Contact mechanics � Finite elements �
Boussinesq solution

1 Introduction

Most engineering surfaces are rough, regardless of whether

the surfaces are naturally created or are processed. When

two surfaces come into contact, this roughness causes

multi-point contacts such that the actual area of contact is

only a small fraction of the available contact area.

Atomic force microscopy (AFM) and other similar

imaging techniques enable measurement of surface rough-

ness at near-atomistic length scales. There is potentially

substantial revenue in utilizing this high-detail surface

topography to model and investigate the connection between

micro- and macroscales of contact, adhesion, and friction.

Most conventional methods of modeling rough surfaces

in contact replace the actual surface roughness with a

distribution of non-interacting hemispheres, using statisti-

cal information about surface heights and slopes at a single

length scale [1, 2] or multiple length scales [3, 4]. This

allows for application of well-known contact models to the

individual hemispherical contact points, and allows for

investigating the multi-scale geometry of surfaces. How-

ever, modeling a surface using a hierarchy of hemispheres

implies a loss of information in that the high-detail

topography of the original surface is not directly exploited

in the analysis.

Furthermore, most conventional methods do not take into

consideration the effect of contacting zones on their sur-

rounding areas. When the contact pressure increases over a

given macroscopic surface area, an increasing number of

asperities, at various distances from each other, come into

contact and it becomes crucial to account for interaction

between the microcontacts. Furthermore, the elastic defor-

mation due to the compression of a local region tends to

persist over significant lateral lengths (a point load only

decays as 1/r, where r is the distance from the point of
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application of the load) [5]. Therefore, the deformation of

one asperity influences the deformation of neighboring

asperities, and vice versa [6]. Thus, contact models that are

based on single asperity contact behavior become deficient.

Polonsky and Keer [7] argue that a numerical solution

technique using actual geometry of real surfaces is necessary

to accurately account for the interaction between the mi-

crocontacts. However, Persson et al. [8] have shown con-

vincingly that, for surfaces with self-affine roughness, the

power spectrum can be used for calculating overall contact

properties (but not for creating actual maps of contact

points).

One method to directly use the actual surface topography

and to model inter-asperity interactions is to use conven-

tional three-dimensional (3D) finite element discretization.

Such models, while potentially highly accurate, require an

enormous number of degrees of freedom (d.o.f.) and, cor-

respondingly, computer power and time. Hyun et al. [5]

model a 512 9 512 pixel surface contacting a flat surface

using over 911,000 nodes with three d.o.f. each and 568,000

tetrahedral solid elements; a typical finite element model is

shown in Fig. 1. To model the approach between the con-

tacting surfaces, a dynamic method is used wherein inertia is

included in the equations of motion, which requires small

time increments and the introduction of artificial damping.

All of these make the solution computationally expensive.

Another numerical modeling approach, which is also

employed in this study, is to make use of an analytical

solution, such as the Boussinesq solution, to characterize

the elastic deformation of a uniform, planar substrate due

to normal direction loads [9, 10]. In this method, the

displacement effects of multiple points of contact are

coupled with each other, and solved in a system of alge-

braic equations. There are a number of models in the lit-

erature applying this method. Webster and Sayles [11]

present a semi-analytical contact solution where they sub-

divide the contact area into rectangular segments, on which

they assume a constant pressure. They demonstrate a

solution for a 2D problem with a cylinder pressed on a

perfectly aligned, directionally rough surface. Poon and

Sayles [12] describe a similar method for an idealized 3D

situation, where a smooth sphere is brought into contact

with a directionally rough surface, with surface heights

varying in only one direction. The pressure distribution in

the direction with variable roughness is allowed to vary

with increasing applied load, while the pressure in the

direction with no change in heights is assumed to follow a

Hertzian distribution. The authors include plasticity, such

that the contact pressure is allowed to increase only until it

reaches the hardness of the softer material. Ren and Lee

[13] develop a moving grid method to avoid large sizes of

the matrices that define the deformation coupling effect

between the contact points. Polonsky and Keer [7] use a

fast numerical integration technique to calculate the surface

deflections and they employ a conjugate gradient method

iteration scheme to reach contact distribution convergence.

Following this study, Liu et al. [14] develop a 3D model for

thermo-mechanical contact between two rough surfaces.

All of these models generally start with a prescribed

amount of normal approach between the surfaces, predict

an overlap region, and then correct this while attempting to

obtain convergence to a solution. This is a very useful

approach when elastic contact is being considered. How-

ever, such an approach is not straightforward to use for

contact problems with path and/or history dependencies,

which are likely to occur if adhesion, plasticity, or visco-

elasticity are of interest.

Dickrell et al. [15] discuss a simple numerical model

that takes into consideration the pixelated data from real

surfaces obtained by common profilometry techniques. In

their model, the surface asperities are assumed to be rigid-

perfectly plastic and supported by a rigid substrate. Thus,

there are no elastic deformations, and the softer of the two

surfaces is assumed to yield wherever there is contact. The

material that is displaced by plastic deformation is allo-

cated to adjacent pixels. This enables the redistribution of

plastically deformed material and its effect on contact area

to be easily calculated. It is possible to add simple elastic

behavior to the individual pixels in this model, but that

would not account for the possibly significant long-range

coupling effects due to the deformation of the substrate [5].

In this article, we extend the approach of Dickrell et al.

using the Boussinesq displacement relations to create an

elastic foundation that laterally couples different contact

Fig. 1 Side view of a three-dimensional finite element mesh of an

elastic body (top) with a 512 9 512 pixel resolution rough surface

that is pressed onto a flat, rigid substrate. Hyun et al. [5]
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regions together. Here, we consider only elastic deforma-

tions, but the approach we describe can be further

enhanced to include Dickrell et al.’s method to account for

plastic deformation.

Our finite element approach uses a combination of ana-

lytically calculated surface behavior of a linear, elastic,

homogenous, isotropic material subject to normal loads, i.e.,

the Boussinesq displacements, to characterize far-field

deformations, and a surface layer discretization that directly

utilizes AFM data to account for roughness. In essence, the

surface roughness is a thin layer that overlies an elastic sub-

strate. To investigate the development of contact, we follow a

step-by-step approach, which does not require a convergence

consideration. We discuss methods to minimize the size of the

matrices and to speed up the detection of contact points. In the

following sections, we describe our model, show validations

through example cases compared to analytical and other

numerical solutions, and discuss accuracy of the method. We

then apply the method to investigate contact behavior of

surfaces from actual MEMS-based friction experiments.

In this article, we focus on elastic contact situations.

While other cases, such as plasticity and adhesion [16], are

important phenomena to consider for nanoscale contact, the

case of purely elastic contact is important and is of wide

interest. For example, interfaces that are brought into

contact without sliding, especially if between high-strength

materials, can be mostly elastic; the contact properties are

important for considering heat transfer, electrical conduc-

tivity, stiffness, and leak rates. As well, the steady-state

sliding of worn-in surfaces can progress to mostly elastic

contact after the tallest and sharpest asperities are worn

away. In contrast to the references cited earlier, our

approach offers some significant advantages, including that

it is carried out incrementally (i.e., in step-by-step fashion),

wherein the evolution of asperity interactions is deter-

mined. An incremental approach is required for problems

that have path and/or history dependencies, such as are

likely to occur with adhesive, plastic, or viscoelastic

materials. Thus, the approach developed in this article

fundamentally provides a general foundation upon which

enhancements can be subsequently added.

In addition, instead of using aggregate properties of the

surfaces, like the power spectrum [8], the direct calculation

of contact properties enables the contact points to be

individually determined, enabling visualization, mapping,

and further characterization of the entire calculated contact

interface.

2 Description of the Model

The topography of a surface, as obtained by AFM imaging,

is a set of height data for a rectangular region of a surface

area, as shown in Fig. 2. Our model features a one-to-one

representation of each of the contacting surfaces, using

rectangular prisms of material that protrude from each

surface at every pixel, and these prisms of material are

called voxels. In other words, voxels are the smallest box-

shaped parts of a 3D scan and the name is derived by

contracting the words ‘‘volume’’ and ‘‘pixel.’’

The model discretizes each of the two contacting surfaces

using two regions. The first region, defined as the substrate, is

an elastic half-space that is discretized using a set of nodes that

lie in a horizontal plane and whose deflections are fully cou-

pled with each other. The second region, the interface, is a thin

surface layer consisting of individual, uncoupled springs that

protrude from the substrate at every pixel, as shown in Fig. 3.

The surface topography, such as that obtained from an actual

AFM image, is represented in the interface domain. Non-

linear material properties including adhesion and plastic

deformations can be assigned to the springs that define the

interface. While our model uses an elastic half-space for the

substrate region, it is possible to use other substrate domain

types, such as a thin or thick plate, etc.

In this finite element method, nodes have only normal

direction displacements as d.o.f. These displacements are

coupled with one another within the substrate using the

Boussinesq solution, which provides displacement response

for all the surface nodes for a given vertical loading problem

[9, 10]. The substrate is thus modeled as a superelement,

representing the deformable half-space. Assuming a perfect

alignment of the data points on the two contacting surfaces,

the possible contact locations are quantized as the square

pixels corresponding to the voxels of the two surfaces (i.e.,

two contacting surfaces imaged with 512 9 512 pixel reso-

lution will have (512)2 possible contact points). While our

approach is an example of a finite element method, it is not a

traditional finite element approach wherein a volume is dis-

cretized using continuum finite elements. Rather, the substrate

is a super-element (or an infinite element) and simple spring

finite elements are used to discretize the surface layer [17].

2.1 The Substrate

The surface deflection for an elastic half-space subjected to

a normal direction point load is described by Boussinesq

[9] and Love [10] as

uzðx; y; 0Þ ¼ �
ð1� mÞP

2pG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ; ð1Þ

where x and y are the coordinates of the surface points

relative to the point of load application; P is the point load

applied at the origin, as shown in Fig. 4a; G and m are the

shear modulus and Poisson’s ratio of the elastic half-space,

respectively; and uz is the displacement in the z direction
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which is normal to the interface. This relation is singular at

the coordinate system origin, making it impractical to use

as a force–deformation calculation. When the point load is

relocated to the coordinates (s, t), as shown in Fig. 4b, the

surface deflections are

uzðx; y; 0Þ ¼ �
ð1� mÞP

2pG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� sÞ2 þ ðy� tÞ2
q ð2Þ

When the loading consists of a normal pressure distri-

bution p(s, t) over an area A, as shown in Fig. 4c, the

displacement solution can be obtained using Eq. (2) to

integrate the displacement effects due to loading over each

infinitesimal area dA, or (ds dt), as

uzðx; y; 0Þ ¼ �
ð1� mÞ

2pG

ZZ

A

pðs; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� sÞ2 þ ðy� tÞ2
q ds dt:

ð3Þ

When the pressure distribution on a square pixel is assumed

to be uniform, a surface displacement field can be obtained

Fig. 2 Surface representation

with voxels

Fig. 3 Surface representation

for the finite element model: the

elastic horizontal coupling of

the voxels is achieved in the

substrate domain. The interface

domain is represented with

individual axial springs

protruding from the substrate
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using the above integral, with a total load of P over a square

area of dimension d 9 d, as shown in Fig. 5, as

uzðx; yÞ ¼

�C ðd þ 2yÞ log
d

2
� xþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd � 2xÞ2 þ ðd þ 2yÞ2
q

� ��

þ ðd � 2xÞ log
d

2
þ yþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd � 2xÞ2 þ ðd þ 2yÞ2
q

� �

� ðd � 2yÞ log � d

2
� xþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd þ 2xÞ2 þ ðd � 2yÞ2
q

� �

� ðd þ 2xÞ log � d

2
þ yþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd þ 2xÞ2 þ ðd � 2yÞ2
q

� �

þ ðd � 2yÞ log
d

2
� xþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd � 2xÞ2 þ ðd � 2yÞ2
q

� �

� ðd � 2xÞ log � d

2
þ yþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd � 2xÞ2 þ ðd � 2yÞ2
q

� �

�ðd þ 2yÞ log � d

2
� xþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd þ 2xÞ2 þ ðd þ 2yÞ2
q

� �

þðd þ 2xÞ log
d

2
þ yþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd þ 2xÞ2 þ ðd þ 2yÞ2
q

� ��

;

ð4Þ

where C ¼ ð1� mÞP
2pGd2

:

Figure 6 shows the displacement field produced by a

uniform pressure over a unit square pixel located at the

origin of the coordinate system; the displacements are

shown inverted for better visualization, and the boundaries

of the pressure region are marked with thick lines. Equa-

tion (4) is defined everywhere except locations where a

logarithmic operand is equal to zero, i.e., on line segments

x = ±0.5, for -0.5 \ y \?, and y = ±0.5, for ?\ x

\ 0.5. Thus, the function is defined at the centers of all

pixels, which are shown with dots in Fig. 6.

When the vertical deflections at the center of each sur-

face pixel are defined as d.o.f, Eq. (4) can be used to obtain

a flexibility matrix SB that relates forces to displacements,

where an entry sij in the flexibility matrix represents the

displacement at the ith d.o.f. due to a unit load at the jth

d.o.f. For given material properties and the pixel size d, this

value of sij depends on the difference of the x and y

coordinates between the two d.o.f. The flexibility matrix

that is obtained is symmetric. By taking the inverse of SB,

the stiffness matrix K�B can be obtained, where an entry kij

represents the force required at the jth d.o.f to cause a unit

Fig. 4 Depiction of the

Boussinesq problem for: a a

point load at the center of the

coordinate system, b a point

load at coordinates (s, t), c a

pressurized area A, where the

pressure distribution is defined

by a function, p(s, t)

Fig. 5 Boussinesq problem for a square area of dimension

d 9 d with uniform pressure p
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deflection at the ith d.o.f. Letting n denote the number of

d.o.f. per surface, the stiffness matrix K�B has a size of

n 9 n. This stiffness matrix relates the forces at all d.o.f., f,

with the deflections at all d.o.f., uz

K�Buz ¼ f

K�B ¼ S�1 ¼

k11 k12 � � � k1n

k21 k22 � � � k2n

..

. ..
. . .

. ..
.

kn1 kn2 � � � knn

2

6

6

6

4

3

7

7

7

5

: ð5Þ

Aside from the substrate d.o.f. described earlier, an additional

d.o.f. is included in Eq. (5) for each surface to allow for a

possible non-zero far-field displacement of the substrate, as

denoted in Fig. 3 with d1 and d2; these are called ‘‘handle

nodes,’’ or foundation nodes. The stiffness terms related to the

foundation d.o.f. are augmented to K�B at row and column

number (n ? 1). The terms in the last row and column of the

resulting matrix KB are obtained by considering rigid body

displacement capability. No forces should be generated when

all the surface d.o.f. displace by the same amount as the handle

node. Equation (5) can be rewritten with a force vector

consisting of zeroes, and a displacement vector consisting of

ones, both with size (n ? 1)

KB

1

1

..

.

1

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼ K�B

k1ðnþ1Þ

..

.

knðnþ1Þ
kðnþ1Þ1 . . . kðnþ1Þn kðnþ1Þðnþ1Þ

2

6

6

6

4

3

7

7

7

5

1

1

..

.

1

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

0

0

..

.

0

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð6Þ

where ki;nþ1 ¼ knþ1;i ¼ �
X

n

j¼1

kij

2.2 The Interface

In the interface layer, each voxel element is modeled as an

axial spring. To determine the stiffness k of the voxel, we

assume the x and y direction strains to be zero throughout

the voxel. This assumption is warranted because the voxel

is supported from its sides by adjacent voxels, except for

possibly a small height difference that might make it

extend beyond its surrounding neighbors. Thus, the stress

(rz)–strain (ez) relation for the z direction is

rz ¼
Eð1� mÞ

ð1þ mÞð1� 2mÞ ez; ð8Þ

where E and m are the elastic modulus and Poisson’s ratio

of the interface material. All pixels have the same area d2,

and hence the stiffness for a voxel with height h above the

substrate has the force displacement relation

k
1 �1

�1 1

� �

u1

u2

� �

¼ P1

P2

� �

ð9Þ

k ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ

d2

h
; ð10Þ

where u1 and u2 represent the displacements, and P1 and P2

represent the external forces at the bottom and top nodes of

the voxel, respectively, as shown in Fig. 7. If the interface

material is incompressible (i.e., m = 1/2), then Eq. (10)

provides an infinite value of stiffness k. Difficulties with

incompressible elastic media are well known, and the fact

that k becomes infinite for incompressibility is not funda-

mentally problematic and does not present any limitation of

our approach.

When the interface deformability is represented in this

fashion, the stiffness of the voxel is inversely proportional

to the height h, which is a somewhat arbitrary term that

needs to be carefully selected. The substrate elasticity

represents the exact solution for a flat surface, and any

additional finite stiffness due to the interface adds to the

overall flexibility. Further discussion about the stiffness of

the interface layer can be found in the example problems

that are treated later.

2.3 Contact Between Surfaces

When a pixel from one surface makes contact with a pixel

from the other surface, we model this contact using an

additional very stiff spring element (i.e., a penalty spring).

Stiffness of this contact element has the same form as

Eq. (9). The topology of the global stiffness matrix for the

entire discretization is shown in Fig. 8, where Kc in this

Fig. 6 Displacement field produced by a uniform pressure over a

square region of unit area (boundaries of pressurized area indicated by

the heavy lines) centered at (0,0), when the coefficient C in Eq. (4) is

assumed to be 1. The displacements are inverted for better

visualization
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case is the stiffness matrix contributed by the penalty

spring elements.

3 Algorithmic Considerations

3.1 Memory and Speed Considerations

Our approach substantially decreases the number of d.o.f.

compared to a full three-dimensional finite element anal-

ysis. Nonetheless, when all the available pixels are coupled

with each other for the Boussinesq half-space, the number

of equations to be simultaneously solved becomes large. A

grid of fully coupled Np by Np d.o.f. results in a Boussinesq

superelement stiffness matrix size of (Np
2 ? 1) 9

(Np
2 ? 1), where Np is the number of pixels per side of the

surface image. For Np = 512, this amounts to 262,145

equations. The global stiffness matrix including both sur-

faces with their substrate and interface layers would

involve over a million d.o.f. This is less than the 2.7 million

d.o.f. in the 3D FEA example in Hyun et al. [5], which

discretizes one surface of the contact problem; however,

the difference is not satisfactory, necessitating further

reduction in our system size.

To reduce the size of matrices, two methods were con-

sidered. The first method investigated was the use of a

coarse substrate mesh with a manageable size and treating

intermediary points as ‘‘slave’’ d.o.f. In this case, although

the substrate still had the general deflection shape of an

elastic half-space, the coarsening of the mesh resulted in

reduced precision in the contact area calculation, pressures,

and displacements. When a load is applied as a uniform

pressure on a larger square area (i.e., a pixel of a coarser

mesh), the area of influence of an individual contact point

becomes larger, while the maximum deflection and pres-

sure are underestimated. Furthermore, large portions of the

stiffness information, namely the equations contributing to

the d.o.f. for voxels that are not in actual contact, are not

utilized.

The second method, which we discuss below, involves

reducing the superelement d.o.f. to only those that are

associated with the voxels in contact. Usually, only less

than a few percent of the apparent area is in contact, thus

the required stiffness matrix for this method has substan-

tially smaller size.

To understand the evolution of the contact area with

increased compression, an incremental algorithm is used.

One disadvantage of this method is that the stiffness matrix

needs to be reformed with the addition of each new contact

point. As the size of the stiffness matrix becomes large, this

may lead to long calculation times. Several methods were

implemented to reduce the program execution time,

including: generating nodes only at contact points and

updating the node list at each step; numbering the nodes

with element-by-element ordering to reduce the populated

portion of the stiffness matrix; using the same substrate

flexibility matrix for both surfaces and using triple factor-

ization for inverting the matrix; and carefully minimizing

the portion of the area where the next contact point is

searched.

y

z 

x

h 

d 
d 

u1, P1

u2, P2

≡
u1, P1

u2, P2

k 

Fig. 7 Geometry of a single

voxel with area d2 and height h
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Fig. 8 Topology of the global stiffness equation including stiffness

of the Boussinesq elements (KB), interface spring elements (Ki), and

contact elements (Kc). The subscripts of displacements (u) and forces

(f) represent the handle (h), substrate (B), and interface (i)
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3.2 The Algorithm

The coding for the finite element analysis was done as an

enhancement to the FEMCOD program skeleton [18]. The

FEMCOD program has features such as compact column

(skyline) storage and an active column equation solver,

which are useful for sparse or banded stiffness matrices as

shown in Fig. 8.

At the start of the algorithm, the surface heights are

entered into the program for each pixel over a square

contact region for both contacting surfaces. These values

represent the average heights of the voxels, and the d.o.f.

are defined at the center point of each voxel. The highest

sum of any two of the voxel height pairs is determined as

the first contact point. Positioning the surfaces so that they

touch at this point without any load allows the gaps

between the upper and lower surfaces to be calculated and

sorted, to be used in a simplified contact detection scheme.

Starting with the initial configuration described above,

the stiffness matrix is created for a single point contact. At

this stage, there are six d.o.f., consisting of the d.o.f. for the

two handle nodes, the two substrate nodes, and the two

surface nodes. A unit load (1 nN) is applied to the top

handle node, while keeping the bottom handle node fixed.

These linear equations are solved to obtain the displace-

ments at the contacts.

To determine the next pair of contacting voxels, the

displacements of the non-contacting voxels are calculated

under the unit load for the step. Analysis of the whole

surface is cumbersome, and not necessary for this search,

as the surfaces are more likely to contact at locations with

low gap values. On the other hand, the contact sequence

does not simply follow the order of the gap values. To

efficiently search for the next contact, a reduced candidate

method was prepared, where a set of candidate locations is

selected starting from locations with the smallest initial

gaps. The size of this contact candidate list varies

according to the number of existing contacts. Using the

force displacement behavior for the load step, the smallest

force required to form another contact is found and the

associated location is marked as the next contact point.

Multiple points that require the same smallest force are all

included in the next load step.

New surface and substrate points, interface elements,

and contact elements are generated and the connectivity

information for the existing Boussinesq elements is upda-

ted. The process of solving for displacements and finding

new contacts is iterated until the initially selected maxi-

mum number of contacts is reached. For each of these

steps, a unit load is used to determine the force–displace-

ment behavior. The force increment for every contact point

is calculated at each step and added to the previous force

value. A final check algorithm is introduced at the end of

the simulation to verify that no contacts were missed with

the reduced candidate contact detection method.

4 Verification Examples

In this section, we carry out several simulations to help

verify the accuracy of the method and to study its con-

vergence properties with mesh refinement. This requires

simulations of problems having analytic solutions, and this

requires modeling of problems with idealized surface

geometry (e.g., perfectly flat, spherical, etc.). Examples

using general surface geometries obtained from AFM

profilometry are presented in Sect. 5.

For the voxel dimensions considered in the following

examples, when the dimension h is chosen such that the

entire roughness structure is contained in the interface

layer, the layer becomes too soft. In the test cases we

considered, it was found that the elastic behavior of the

contacting bodies can be modeled solely with the Bous-

sinesq substrates. For this reason, in the examples dis-

cussed in this article, the interface elements are given a

stiffness value that is five orders of magnitude higher than

the substrate layer, making them essentially rigid. In this

form, the Boussinesq layer defines the elasticity and the

interface layer is retained to model the roughness infor-

mation and for future introduction of additional phenomena

such as adhesion and plasticity.

4.1 Rigid Cylindrical Punch Pressed into an Elastic

Half-Space

As a test example, a problem of a rigid circular punch is

investigated. The lower surface is modeled as a flat elastic

substrate, as shown in Fig. 9, with E = 200 GPa and m = 0.25.

The upper surface is modeled as a rigid cylinder protruding

from a rigid flat surface, with an elastic modulus that is five

orders of magnitude higher than that of the lower surface.

Figure 10a shows the discretization of the circular

punch for the first model, which has a 1 nm pixel size.

From the discretized circular contact area, an effective

radius was obtained and used in the analytical solution for

comparison. Keeping the area of the circular punch con-

stant, the mesh was refined twice, generating models at

one-third and one-ninth of the initial mesh size, as shown

in Fig. 10b, c.

The analytic solution for a rigid cylindrical punch of

radius R contacting the surface of a semi-infinite body

provides the surface displacement and pressure values as

[19]

d ¼ Pð1� m2Þ
2RE

ð11Þ
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rCðrÞ ¼
P

2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p ; ð12Þ

where d is the displacement of the punch, P is the applied

load, m is the Poisson’s ratio, and E is the Young’s modulus

of the elastic half-space. The theoretical pressure rC at the

edge of the punch is infinite. The analytical calculation for

the pressure along a radius of the punch is shown with the

solid line in Fig. 11, compared with the calculated pressure

values for the different mesh sizes. The finest mesh size

gives excellent agreement with the analytic solution for

pressures and displacement, with errors less than 1 %.

Table 1 compares the center node pressure values and the

displacements with the analytical solution.

Richardson extrapolation [17] can be used to improve

the results obtained using multiple mesh sizes according to

the following relation, provided that the meshes have

undergone regular refinements:

/0 ¼
/1hpr

2 � /2hpr

1

hpr

2 � hpr

1

; ð13Þ

where u0 is the extrapolated value of the solution, u1 and

u2 are FE approximate solutions obtained from different

mesh sizes, i.e., h1 and h2, respectively, and pr is the rate of

convergence for the model. For our application of Eq. (13)

to this example, the exact solution u0 is known, and with

the FE results u1 and u2 obtained for two mesh sizes h1

and h2, Eq. (13) contains one unknown, namely the rate of

convergence pr. Using the results for the two coarsest

meshes, shown in Table 1, we determine pr = 1.15 for the

rate of convergence for displacements, and pr = 1.06 for

the rate of convergence for stress. Using these convergence

factors, another application of the extrapolation between

the two finer mesh models provides estimates of the

displacement value with an error of 0.01 % and the center

point stress with an error of 0.031 %, when compared to

the analytical solution.

With the values of pr cited above, the rate of conver-

gence is slightly better than linear, which is slow. Because

of the differences between our model and the classical

finite element methods, the exact nature of the rate of

convergence is not immediately apparent. For this exam-

ple, one factor affecting the rate is that the area that is

discretized is not the same for each refinement, as we are

approximating a circular edge using piecewise straight

lines. Another factor is our attempt to converge to the

asymptotic singular behavior of the stresses at the punch

edge using square areas with uniform pressure. However,

the displacement solution is nodally exact at the d.o.f. for

the pressure distribution represented with the discretiza-

tion, and the results show outstanding accuracy, even for

the coarsest mesh sizes.

4.2 Rigid Square Punch Pressed into an Elastic Half-

Space

To investigate the effect of approximating a curved

boundary using piecewise straight line segments, we study

a similar problem with a square punch, as shown in Fig. 12.

Beginning with a single contact point solution, the mesh is

refined three times, each time dividing the size by three,

thus increasing the number of contact points by a factor of

9. Table 2 gives the calculated values for the vertical stress

at the center point of the contact area and the displacement

of the punch.

The analytical solution for this problem is approximate

and thus, an exact error analysis cannot be performed.

Borodachev [20] offers an approximate solution which is

Region to be
meshed

y
x

z

10 nm

10 nm

R = 2.5 nm

Fig. 9 Rigid cylindrical punch

pressed into an elastic half-

space
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used for determining the displacement and stress values

given in Table 2. A rate of convergence pr can be calcu-

lated using displacement results of three mesh sizes,

assuming the rate is uniform. The first three mesh sizes

yield a rate of convergence of pr = 0.874 and a second

calculation using the second, third, and fourth mesh sizes

give pr = 0.973. As the first mesh size contributes only to a

uniform pressure distribution, the second convergence rate

value is deemed to be more reliable. This rate is very close

to linear, similar to the rates seen in the circular punch

problem. Using pr = 0.973, the displacement estimate can

be extrapolated to 0.407 9 10-3 nm and the normalized

x 
10nm 

y

10nm 

(a) (b) 

(c)

Fig. 10 Top view of the circular punch with contact areas modeled with a 21 pixels with 1 9 1 nm size, b 189 pixels with 1/3 9 1/3 nm size,

and c 1,701 pixels with 1/9 9 1/9 nm size
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Fig. 11 Radial pressures for the rigid circular punch problem for FE

models with different mesh sizes, and the analytical solution

Table 1 Center node stress, displacement and calculated errors for

the circular rigid punch on an elastic substrate, under a total load of

1 nN

Mesh size

(nm)

Displacement

(10-3 nm)

Displacement

error (%)

Pressure at

the center

(nN/nm2)

Pressure

error (%)

1 0.955 5.37 0.0261 9.54

1/3 0.920 1.51 0.0245 2.97

1/9 0.911 0.485 0.0240 0.934

Analytical 0.907 0.0238
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pressure at the center of the punch can be extrapolated to

0.486. The convergence rate for this problem is about the

same as that for the cylindrical punch. Even though the

contact region is easier to mesh for this example, modeling

the pressure distribution at the edges becomes more chal-

lenging. Because the convergence rates obtained for the

finer mesh for both models are close to 1, a linear rate of

convergence is assumed for future examples. As with the

circular punch, while this rate is low, the results show

outstanding accuracy, even for the coarsest meshes.

The calculated stresses along the x axis (passing through

the center point of the punch, parallel to the side of the

square) are shown in Fig. 13. Three mesh sizes using the

method developed in this article are shown with the square

data points. These are compared with solutions from Bor-

odochev’s approximate analytical solution [20] and 3D

FEM analysis using ANSYS, which are shown with the

circular data points. In the two ANSYS models, the contact

region is discretized into 36 and 144 elements, respec-

tively, using 20 node quadratic solid elements. Symmetry

is employed to simplify the model. Richardson extrapola-

tion was performed using the two mesh sizes.

It is seen in Fig. 13 that our method overestimates the

stress along the axis considered, while the 3D ANSYS

model underestimates it, and both show better agreement

with the approximate analytical result with mesh refine-

ment. The difference between the extrapolated central

stress values is less than 1 %. Overall, there is outstanding

accuracy of the proposed model even with the coarsest

mesh sizes.

4.3 Rigid Spherical Surface Pressed into an Elastic

Half-Space

A spherical contact problem, as shown in Fig. 14, was

modeled to test the step-by-step contact detection algo-

rithm. In contrast to the previous examples, this example

has varying surface heights.
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Fig. 12 Rigid square punch

pressed into an elastic half-

space, with E = 200 GPa and

m = 0.25

Table 2 Center node stresses and displacements

Mesh size

(nm)

Number of

points defining

contact

Displacement

for 1 nN load

(10-3 nm)

Normalized

pressure at

the center

10 1 0.526 1

3.333 9 0.451 0.511

1.111 81 0.422 0.519

0.3704 729 0.412 0.498

Analytical estimate 0.400 0.456
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Fig. 13 Comparison of radial pressures for the rigid square punch

model to a conventional 3D models and an approximate analytical

solution [20]
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For two materials with Young’s moduli of E1 and E2 and

Poisson’s ratios of m1 and m2, an effective elastic modulus

E� the force–displacement (F–d) relation and the contact

area–force (A–F) relation are as follows [19]:

1

E�
¼ 1� m2

1

E1

þ 1� m2
2

E2

ð14Þ

F ¼ 4

3
E�R1=2d3=2 ð15Þ

A ¼ p
3FR

4E�

� �2=3

; ð16Þ

where R is the radius of the sphere, A is the contact area,

and F is the contact load. For this example, E1 = 200 GPa,

m1 = 0.25, R = 15 nm and the second material is assumed

to be rigid.

Pixel sizes of 0.5, 1, 2, and 4 nm are used to investigate

the performance of the algorithm. Figure 15 shows the

spherical surface modeled with the 1 nm pixel size. The

force displacement behavior does not change with chang-

ing pixel sizes in our model, as seen in Fig. 16a. The

contact area calculation seen in Fig. 16b shows a step-wise
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Fig. 14 Rigid spherical surface

pressed into an elastic half-

space

Fig. 15 Spherical punch model used in the example of a rigid sphere

contacting a flat elastic surface. The sphere has a radius of 15 nm and

the pixel dimension for this model is 1 nm
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Fig. 16 a Load versus displacement and b area versus load results for

a rigid spherical punch contacting a flat elastic surface, compared to

the Hertz solution
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increase with increased load, caused by the discretized

nature of the surface, but the overall trend between the

models with different pixel size is consistent.

In both the figures, excellent agreement with the Hertz

model is seen until a contact area of about 100 nm2. The

Hertz solution is not considered to be valid past this region,

as it assumes the contact radius to be much smaller than the

radius of the spherical surface [19]. A power law fit to our

data for the 0.5 nm pixel case in the full range shown in

Fig. 16 gives an area–load dependence of A � F0.68, which

is in close agreement with the A � F0.667 relation for the

Hertz solution given in Eq. (16).

5 AFM Surface: Experiments with Resolution

The AFM topography image of a polycrystalline silicon

surface-micromachined nanotractor actuator was used as a

sample case [21]. The AFM surface was placed at the

bottom and its contact with a rigid flat surface was mod-

eled. For the AFM surface, the material properties are

E = 200 GPa and m = 0.25, while the rigid surface was

modeled with an E value that is larger by five orders of

magnitude. The image used is of a 5 9 5 lm area mea-

sured at 512 9 512 pixel resolution (Np = 512). To

investigate the behavior of elastic contact with varying

sampling sizes, the surface resolution was reduced to

obtain images of Np = 256, Np = 128, and Np = 64. Let i,

j = 1…Np; to reduce the resolution by half, for example,

pixels with odd i and odd j indices can be selected, ignoring

the other pixels. This method is consistent with the way an

AFM instrument measures surface heights for different

resolutions. An alternate method is also investigated, which

consisted of averaging the neighboring four pixels to obtain

a lower resolution height value. The displacement and

force analysis for the first method with varying sets of odd

and even i, j and the alternate method give similar results,

with errors within ±2 % for 1,000 contacts.

Figure 17 shows the load versus displacement and

contact area versus displacement graphs for the different

resolution AFM images. The resolution of the image does

not have any significant effect on the load versus dis-

placement behavior, while the contact area for a given

displacement is strongly dependent on the resolution. For a

given displacement, the high resolution image gives a

much smaller contact area. According to our model, simply

dividing a pixel under uniform pressure into four smaller

pixels of equal height does not change the results. How-

ever, in the higher resolution image the four pixels are

generally not at the same height. When the highest of these

pixels come into contact, it delays the contact of the

remaining pixels. In the purely elastic case, this effect is

exacerbated, whereas in a plastic model, the pixel that

comes into contact first would likely yield and the sur-

rounding pixels would more easily come into contact. The

differences between the contact areas for the different

resolution models will likely be smaller if plasticity is

included.

The results of a simple contact area calculation repre-

senting no elastic coupling (i.e., the substrate of the rough

surface is rigid, and the elastic voxels deform indepen-

dently from each other) between the contact points is

shown in Fig. 17a, b with dashed lines. The stiffness of an

uncoupled voxel was obtained from the Boussinesq prob-

lem with a single pixel under contact; i.e., using Eq. (4)

with (x, y) = (0, 0). For the 512 9 512 pixel image rep-

resenting a 5 9 5 lm surface with E = 200 GPa and

m = 0.25, the center point of a single pixel under uniform

pressure would deform with a stiffness value of

5.39 9 10-4 N/m. The area data is obtained by counting

the voxels in the 512 9 512 image that are higher than the

given displacement. For a given displacement value, the

contact area estimated with no elastic coupling is much

higher, and the contact load is much lower than the results

from our model, as expected.
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Fig. 17 The solid lines represent a load versus displacement and

b area versus displacement results for the polycrystalline silicon

surface at different resolutions, modeled with the elastic Boussinesq

substrate model pressed against a rigid flat surface. The dashed line
represents the contact area obtained by an elastic response without

any coupling between the contact points (i.e., with a rigid substrate)
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Figure 18a shows the contact area fraction versus

apparent pressure graphs for the surfaces using our model,

shown in dashed lines, and also using McCool’s statistical

method [2] based on Greenwood and Williamson’s model

[1], shown by the solid lines. The trends follow a power

law, where the exponent increases as the resolution is

increased. Increased resolution also decreases the contact

area estimate for a given pressure value. The importance of

the sampling resolution is further demonstrated with the

results from the McCool analysis, which uses size-depen-

dant RMS heights, slopes, and curvatures as input.

Overall trends for the 64 9 64 and 256 9 256 pixel

images look similar between the two methods, with the

fraction of the area in contact becoming smaller as the

resolution increases. However, the power law predicted by

our model has a smaller exponent than McCool’s method

for every resolution image. Our results for the 128 9 128

pixel image diverge from the statistical estimate at around

0.8 % real contact area, while the 512 9 512 pixel image

results are different from the beginning of the contact, with

the difference typically larger than 15 %.

The 512 9 512 image provides an area–load depen-

dence relation of A � L0.907. Figure 18b shows two sets of

Richardson extrapolation results for the different resolution

images, using a linear convergence rate (pr = 1). When the

data from 128 9 128 to 256 9 256 resolution images were

used, the extrapolation gives a trend similar to that of the

512 9 512 image. The power law trend of the extrapola-

tion is A � L0.926. An extrapolation between the

256 9 256 and the 512 9 512 images gives an area–load

relation of A � L0.947, which is similar to the McCool

method results from the highest resolution image. It should
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Fig. 18 a Contact area fraction

versus apparent pressure results

for the polycrystalline silicon

surface pressed against a rigid
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resolutions. The results from our
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results are shown with solid
lines. The dotted line represents

the behavior when the substrate
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be noted that there are other results in the literature for this

relation; one of these is Zhuravlev’s model [22], which

predicts an exponent of 0.91. For this purely elastic case,

the exponent becomes larger with the increased image

resolution and extrapolation. The exponent values are

within ranges estimated by the statistical models.

The contact area versus load behavior of a simple model

with no elastic coupling between contacts is shown with a

dotted line in Fig. 18a. For a given contact load, a much

smaller contact area is estimated when substrate coupling

effects are neglected. This shows the importance of

including those effects in the calculation.

Figures 19 and 20 show the actual pressure distribution

of the contact spots for the four different image sizes. At

1.2 % of the total area in contact, the calculated maximum

elastic contact pressures are close to 150 GPa. Although

this value is well past the hardness of the material, the

solution was extended to these pressure levels to study the

behavior and make comparisons to the statistical models,

and also to study the effects of the resolution on the

pressure distribution. While the calculations on the smallest

image size give only a crude estimate of the contact

locations, for the image at 128 9 128 pixels, it is actually

possible to identify the contact shapes, pressure distribu-

tions, and intensities within individual contact points. The

estimated pressures become higher and the shapes become

smoother with further increase in resolution.

For the AFM surface example, a comparison of the elastic

stresses at each pixel to material hardness (H) shows the

number of contact points where the stress exceeds the yield

stress, and the fraction of the contact where stress exceeds the

hardness for each step (Fig. 21). A hardness value of 11 GPa

was used for the polycrystalline silicon material [21].

According to this comparison, the plastic region occupies

60–70 % of the real contact area through all stages of contact

development, even at the smallest loads. With a proper

plastic response model, the contact area estimate would be

higher than what is observed in our results.
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Fig. 19 Pressure maps of the polycrystalline silicon surface placed against a rigid flat surface at different resolutions, when 1.2 % of the area is

in contact. Values are given in GPa. See Fig. 20 for zoomed-in images with finer detail of the regions bordered with dashed lines
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6 Conclusion

This model was developed to preserve and fully utilize the

high-detail surface topography data obtained from AFM or

other profilometry methods. It makes use of analytical

solutions to simplify the treatment of the elastic founda-

tions, using d.o.f. only in the normal direction, and sup-

pressing the need to discretize the substrate material in full

3D detail. This enables the important effect of elastic

coupling between nearby contact points to be accounted

for. The validity of the approach was verified with exam-

ples having idealized surface geometries so that analytic

solutions were available. For the examples of rigid punches

with different geometries pressed into an elastic half-space,

we show that our method yields results that are in excellent

agreement with analytical and 3D finite element solutions,

even using coarse mesh sizes. The strength of the method is

that the solution of the surface displacement is nodally

exact for the employed pressure distribution. Furthermore,

these test cases were used to gain insight into the accuracy

and convergence of the method related to resolution (i.e.,

refinement). Examples of Richardson extrapolation are

demonstrated for the trial cases and the real AFM surface

models. Despite the linear convergence rate, the method

can be reliably utilized to obtain high-accuracy estimates of

the contact area–pressure relations using lower resolution

image results.

In the tests using AFM surfaces, where the case of

general 3D contact is demonstrated, the resolution of the

image strongly affects the contact area estimate. The

solutions presented in this article are completely elastic,

and the differences in the responses for the different image

size estimates are expected to decrease with the addition of

plasticity. According to our estimate, a large portion

(60–70 %) of the real contact area will undergo plastic

deformation starting at the smallest loads, and continuing

through all stages of contact development.

The method presented can be used to investigate effects

of using different materials, surface roughening and tex-

turing methods, and differences between unworn and worn
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Fig. 20 Zoomed-in pressure maps of the polycrystalline silicon surface placed against a rigid flat surface at different resolutions, when 1.2 % of

the area is in contact. Values are given in GPa. The respective images correspond to the areas bordered with dashed lines in Fig. 19
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surfaces. By presenting here the most straightforward case

of non-adhesive elastic interactions, we provide a basis for

future extensions. The algorithm is carried out incremen-

tally (i.e., in step-by-step fashion) wherein the evolution of

asperity interactions is determined. This makes the algo-

rithm amenable for enhancements that would require

path- and/or history-dependent solutions such as adhesion,

plasticity, or viscoelasticity. Other possible enhancements

that could be considered include anisotropy, heterogeneity,

and modification to include solutions for a surface shear

distribution using a Boussinesq–Cerruti solution [10].
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Fig. 21 The number and percentage of contact points that are

estimated to be experiencing pressure values above the material

hardness. For the 512 9 512 pixel example, when the contact area is

1 % of the total surface area, 1,854 of the 2,562 pixels experience

pressure values, p [ H

Tribol Lett (2013) 50:331–347 347

123


	A Numerical Contact Model Based on Real Surface Topography
	Abstract
	Introduction
	Description of the Model
	The Substrate
	The Interface
	Contact Between Surfaces

	Algorithmic Considerations
	Memory and Speed Considerations
	The Algorithm

	Verification Examples
	Rigid Cylindrical Punch Pressed into an Elastic Half-Space
	Rigid Square Punch Pressed into an Elastic Half-Space
	Rigid Spherical Surface Pressed into an Elastic Half-Space

	AFM Surface: Experiments with Resolution
	Conclusion
	Acknowledgments
	References


