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Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding

microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length

scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS

surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-

defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results

for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly

describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length

scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant

when asperity heights and radii are scaled correctly in the model.
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1. Introduction

The ability to design reliable MEMS devices with
sliding surfaces in contact depends on knowledge of
contact and friction behavior at multiple length scales.
While friction at macroscopic scales can be modeled
with Amontons’ law, as the dimensions of a structure
become smaller, the importance of surface roughness
and surface forces (e.g., adhesion) are magnified and
frictional behavior can change [1].

Surface roughness plays a crucial role in contact and
friction between surfaces. For describing the roughness
of a surface, statistical parameters for the surface height
distribution function, i.e., root-mean-square (RMS)
height, slope and curvature, have been used in several
studies. These parameters can be directly related to the
density of summits, summit curvature, and standard
deviation of the summit height distribution function,
which are the key inputs to models of rough contact
based on the Greenwood-Williamson approach [2–4].
However, these parameters, if determined experimen-
tally, can vary with sample size and instrument resolu-
tion [5,6].

Examination of rough surfaces shows that they often
have multiscale features. That is, when a section of a
rough surface is magnified, smaller scales of roughness
appear. This general characteristic of surfaces was rec-
ognized long ago by Archard who described an engi-
neering surface as consisting of ‘‘protuberances on

protuberances on protuberances’’ [6,7]. Further,
roughness at smaller scales has been shown to be similar
to that at larger scales, but usually with a different
scaling of length and height [8,9], a property known as
self-affinity. The self-affinity of a shape at different
length scales is a property displayed by fractal models
for surface topography.

A surface is fractal when it is too irregular to be de-
scribed in traditional geometric language, when it has
detail on arbitrarily small scales, and when it has a
structure that repeats itself throughout all length scales
[10]. While there are no true fractals in nature that range
over infinitely small to infinitely large length scales, most
natural surfaces show multiscale geometrical character-
istics, having roughness over multiple length scales that
frequently span many orders of magnitude.

The power spectral density (PSD) describes the fre-
quency content (in this case, spatial frequencies) of a set
of data. It is defined as the Fourier transform of the
autocorrelation function of a profile [10]. An equivalent
definition of PSD is the squared modulus of the Fourier
transform of the data itself, scaled by a proper constant
term. Figure 1 shows two atomic force microscope
(AFM) topographic images from the same region of a
polycrystalline silicon MEMS surface at two different
magnifications, and the respective averaged PSD of
both. The PSDs are seen to correlate well over their
shared length scales of measurement.

The fractal dimension of a surface can be extracted
from its PSD. The PSD of a fractal surface profile can be
related to its fractal dimension by:
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Pð f Þ ¼ C

f ð5�2DÞ
; ð1Þ

where C is a scaling constant and D is the fractal
dimension of a profile vertically cut through the surface
[8,10,11]. For a physically continuous surface, we will
obtain 1<D<2.

The PSDs shown in figure 1(b) are not linear at low
frequencies, and over the full range of frequencies they
do not give a single value for the dimension of its fractal
function representation. This surface could be charac-
terized as a multiple-fractal, where for frequencies less
than 1/100 nm1 (107 m)1), the PSD has varying slope.
For the location shown in figure 1(b) (107 m)1), the
slope of )2.0 in the log-log graph gives a fractal
dimension of 1.5. In the region where the slope is )3.47,
equation (1) gives D=0.77, which is a physically
impossible value for any real continuous surface.

Because the PSD in figure 1(b) is not linear, except for
high frequencies, and because the linear region corre-
sponds to an unobtainable fractal dimension for a real
surface (i.e., D<1), it is not possible to characterize this
particular surface with a fractal function. Nonetheless,
the PSD reveals that the surface has roughness at all
length scales sampled, and furthermore it indicates that
the effects of the multiple scales of roughness on me-
chanical contact phenomena should be taken into con-
sideration [8]. A methodology that goes beyond using
the fractal representation is needed.

In this study, we discuss the scale dependence of the
average height, the average radius of curvature, and the
density of summits on an actual polycrystalline silicon
MEMS surface. Also, the relationship between the scale
dependences and the fractal dimension of the surfaces is
investigated. In the second part, a straightforward
multiscale contact model (comparable to Archard’s idea
[6,7]) is developed, where the asperity force distributions
and the contact area are determined as a function of the
length scale using the elastic Hertz contact model at each
length scale.

2. Analysis of surfaces

Determination of the heights, locations, and curva-
tures of summits on contact surfaces is necessary to
model contact and friction. While this would seem to be
a straightforward task, the multiscale roughness prop-
erties of real surfaces make the concept of a ‘‘summit’’
ambiguous and imprecise. Consider a surface profile
whose height is determined at a finite number of discrete
positions, such as by profilometry. A ‘‘peak’’ or ‘‘sum-
mit’’ can be defined as a location where the height is a
local maximum. In the case of a two dimensional surface
(i.e., a line trace), a sample point is a ‘‘peak’’ if its height
exceeds that at each of its two neighboring sample
points, while for a three dimensional surface (i.e., an
AFM image), a sample point is a ‘‘summit’’ if its height
exceeds that at each of its eight neighboring sample
points. Ambiguities arise when more sampling points
are used, i.e., when the definition of a summit is changed
to require that a pixel is higher than a larger region of its
surrounding neighborhood. To study this phenomenon,
we use AFM topographic imaging like that shown in
figure 1(a) to obtain a pixelized height distribution for a
Si MEMS surface from Sandia National Laboratories
SUMMIT process [12]. The AFM images were acquired
in contact mode using a Digital Instruments Multimode
AFM with a Nanoscope IV controller with a silicon
nitride cantilever having nominal force constant of
�0.05 N/m. The piezo scanner was calibrated using the
manufacturer’s recommended procedure. The tip shape
was tested before and after the measurements using
in-situ tip imaging samples (Aurora Nanodevices,
Edmonton, Canada) to ensure that it started and

Figure 1. (a) 512 · 512 pixel AFM images of the same region of a

polycrystalline silicon surface with RMS roughness �3 nm, taken at

10 lm and 1lm (inset) scan sizes. (b) Power spectral density of the two

AFM images.
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remained a sharp, single protrusion of radius <30 nm,
so as to minimize the effect of convolution of tip shape.
Numerous tips with blunt, multiple, or asymmetric ter-
minations were rejected. Low loads (in the adhesive re-
gime) were used to minimize the contact area and
enhance the lateral spatial resolution. The lateral spatial
resolution of a contact mode AFM image is approxi-
mately determined by the contact diameter, which we
estimate to be of the order of �2 nm, comparable to the
size of one pixel in our highest resolution images ana-
lyzed.

A MATLAB routine is then used to determine the
heights and locations of summits by examining each
sample point (pixel) with coordinates (x, y) and com-
paring its height z to the heights of n neighboring pixels,
where n is called the neighborhood size. For a given value
of n, the region of neighbors surrounding a particular
sample point is a square with size dn by dn, where the box
size dn is given by:

dn ¼ ð2nþ 1Þ L
N
; ð2Þ

where L is the physical width of the square AFM image
and N is the number of pixels per each side of the image.
When a summit is found for a given n, the MATLAB
routine determines the least squares best fit elliptic
paraboloid to the data around the point, to determine
the curvature of the summit in two dimensions. The
major axes of the paraboloid are constrained to fall
along the x and y axes of the image, and the maximum is
constrained to occur at the point (x, y) with height z.

The average height, average radius of curvature and
number of summits are calculated as a function of box
size dn for 1 lm · 1 lm and 10 lm · 10 lm (L=1 and
10 lm, respectively) AFM images of a polycrystalline
silicon surface with an overall RMS roughness of 3 nm
(as measured for a 10 lm · 10 lm region), with the re-
sults shown in figure 2. Note that only a subset of pixels
within a central square region of the image is considered
when searching for summits, such that the same portion
of the data is considered for all neighborhood sizes.

In a log–log plot, the radius and number of summits
are seen to be almost perfectly linear functions of the
box size dn over almost three orders of magnitude of
size, whereas the average height plot is slightly bilinear,
changing slope around d � 100–200 nm, which is close
to grain size observed in figue 1(a). Most strikingly, even
at the small box sizes, (�10 nm), the distributions have
not converged to well-defined values. Scans over smaller
regions show this behavior continues for even the
smallest box size we were able to consider (d=2 nm),
which is reaching the lateral resolution limit of the AFM
itself. The power law dependence of the summit geom-
etry and density seen in figure 2 illustrates the scale
dependence of these values.

In contrast to a real MEMS surface, figure 3 shows
the average summit radius of curvature vs. neighbor-
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Figure 2. (a) Number of summits per area, (b) average height, and

(c) average radius of curvature vs. the box neighborhood size d

for an AFM image of a polycrystalline silicon surface. The RMS

roughness of the surface was measured to be 3 nm for a 10 · 10 lm
AFM image. The smallest data point in the radius plot is omitted due

to an algorithmic artifact.
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hood size for a hypothetical surface with sinusoidal
shape, which is created by:

zðx; yÞ ¼ cosðx=10Þ cosðy=10Þnm: ð3Þ

This surface obviously has a single scale of roughness.
As expected, figure 3 shows that the average curvature
becomes constant for sufficiently small neighborhood
sizes, unlike the MEMS surfaces. For box sizes larger
than the period of equation (3) (i.e., d ‡ 20p), the slope
of the power law approaches 2.0. Because our method of
fitting a paraboloid requires the fit to have the same z
coordinate as the summit in the data, this response for
large values of d is simply a mathematical artifact.

In other words, fitting a paraboloid to a point at fixed
height while the lateral extent of the fit is enlarged will
produce a power law of 2 if the surface is nominally flat
at large length scales. This can be shown analytically in
three dimensions using a least squares fit of a paraboloid
to the sinusoidal surface,

d

dr

Z b

�b

Z b

�b
1� x2

2R
� y2

2R

� �
�ðcosðxÞcosðyÞÞ

� �2

dydx

" #
¼0

ð4Þ

where R is the paraboloid’s radius of curvature and b is
the sampling length (essentially equivalent to d). Solving
for R, its relation to b is found to be:

R / b2: ð5Þ

This analysis helps validate the curvature calculation
in our MATLAB routine since the analytical and
MATLAB results agree. It also shows that the power-
law dependence of the radius of curvature calculation is
not by itself an indication of multiscale surface rough-
ness. However, the lack of convergence of the radius of
curvature to a fixed value at small neighborhood sizes

for the MEMS surfaces is indeed an indication of mul-
tiscale character, in this case down to a length scale of
�2 nm.

To compare the foregoing results to those for a model
fractal mathematical surface, our analysis procedure
(i.e., pixelation of a continuous map of heights followed
by pixel-by-pixel analysis using our MATLAB program)
was applied to three-dimensional fractal surfaces
including the following equation:

zðx;yÞ¼C
XM
m¼1

Xnmax

n¼0
cðDs�3Þn

(
cosUm;n

� cos
2pcnðx2þy2Þ1=2

L
cos tan�1

y

x

� �
�pm

x

� �
þUm;n

" #)

C¼L
G

L

� �Ds�2
lnc
M

� �1=2

ð6Þ

which is a form of a multivariate Weierstrass-Man-
delbrot (W-M) function developed by Ausloos and
Berman [13] and later used in a three dimensional elas-
tic-plastic contact model by Yan and Komvopoulos [14].

Equation (6) is constructed by taking a two dimen-
sional fractal profile as a ‘‘ridge’’, and then superposing
a number of these ridges at different angles to achieve
randomization. F is an array of random numbers to
generate phase and profile angle randomization, M is
the number of ridges, and L is the image size in length
units. G is the roughness coefficient which is used to
correctly scale the height of the function to fit the
modeled surface Ds is the fractal dimension of the sur-
face (2<Ds<3, as the relation between the fractal di-
mension of a surface Ds and that of a profile D is
Ds=D+1 for an isotropic surface). c is a parameter that
governs the frequency and amplitude ratio of successive
cosine shapes (c>1) and thus represents that relative
frequency separation of successive terms in the W-M
function. Lmax is the sample size. Finally, nmax is the
number of cosine shapes added for a profile. Note that
equation (6) is perfectly fractal only if nmaxfi¥. For
practical applications, finite values of nmax are used, so
that cosine shapes with periods larger than Lmax, and
smaller than Lmin are not needed.

Figure 4 shows two sample W-M surfaces. In
figure 4(a), the popular but otherwise unremarkable
value of c=1.5 was used, which results in successively
added cosine shapes whose periods and amplitudes are
moderately spaced apart, providing a surface with a
seemingly ‘‘random’’ aesthetic character. When c=5,
the difference between the periods and heights of con-
secutive cosine shapes is greater. This coarse separation
of roughness scales leads to the easily discernable scales
of ‘‘bumpiness’’ seen in figure 4(b). For the W-M
function, an appropriate number of the cosine shapes
used for defining the surface (nmax) can be selected using:
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Figure 3. Average summit radius of curvature vs. neighborhood size

for a surface with a single scale of roughness (a sinusoidal function).
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nmax ¼
log Lmax=Lmin

log c

� �
ð7Þ

where the ‘‘int’’ function fruncates the value within [ ]
(i.e. rounds to the next lowest integer), Lmin is the period
of the smallest cosine shape. Equation (7) assures that
the cosine shapes have periods that fully span the length
scales from Lmin to Lmax. Thus, the function is ‘‘fractal’’
for all practical purposes. When Lmin and Lmax are 1 nm
and 1 lm, respectively, 18 cosine terms would be needed
for c=1.5, and only 5 cosine shapes would be needed for
c=5. The frequencies are spaced further apart in the
c=5 case. Several W-M surfaces were then created with
fractal dimensions varying from 2.01 to 2.99, and with
the same two values of c (1.5 and 5) used to explore the
effect of spatial frequency separation. For W-M surfaces
with small c values, the number of summits per area,
average height, and average radius of curvature varia-
tion with neighborhood size give almost perfectly linear
distributions on log-log plots, down to the smallest
scales. Examples of the summit density, average height,
and radius of curvature as a function of d for both
values of c are shown for the case of Ds=2.4 are shown
in figures 5(a), (b), and (c), respectively. For W-M sur-
faces with high c values, these plots show deviations
from linearity, which is due to the large frequency sep-
aration between each consecutive cosine term used in the

generation of the surface. This is clearly seen in the plot
of the number of peaks vs. d (figure 5(a)) and average
heights vs. d (figure 5(b)). The average radius of curva-
ture (figure 5(c)) shows little effect of the frequency
separation.

The results of our ‘‘summit search’’ method match
certain analytical predictions. Majumdar and Bhushan
[15] derived the radius of curvature R at the tip of an
asperity for the W-M surface as:

Figure 4. Two W-M surfaces produced using Ds=2.4,

G=1.36 · 10)2 nm, Lmax=1000 nm, Lmin=1 nm, M=10, n1=1.

c=1.5 for (a) and c=5 for (b). All values other than c are taken

from Yan and Komvopoulos 14]). The height scale is in nm.
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R ¼ d D

p2GD�1 : ð8Þ

Using this expression with the box size d as the con-
tact length and with a constant value of G, the radius of
curvature R changes as dD, which matches the slopes
found in figure 5(c).

Wu [16] argues that the W-M function given in
equation (6), developed by Ausloss-Berman, is not ex-
actly a 3D extension of the fractal 2D W-M function,
since a vertical cut of the surface is not necessarily a
W-M function, and thus the surface is not isotropic. He
later shows that, despite this observation, surfaces gen-
erated by this function share very similar properties,
such as summit curvature, with other fractal functions
such as the successive random addition method [16].
Thus, our comparison to the W-M function can be
considered as a reasonable way to illustrate the fractal
character of the actual MEMS surfaces.

Figure 6 shows the exponents of power law fits (i.e.
the slopes on the log-log plots from figure 5) for the
number of summits, average height, and average radius
of curvature distributions of the W-M surfaces with
varying fractal dimensions for the two values of c. A
relation between the fractal dimension and the power
law exponents of these fits is seen. At high fractal
dimensions, the average radius of curvature changes
more rapidly with varying neighborhood size (higher
slope value). This effect is reversed for the corresponding
behavior of the density and average height of the sum-
mits. In other words, a high fractal dimension means
smaller variance in the density and average height with
changing neighborhood size. The change in c affects the
results somewhat, but further analysis is required to
fully understand this effect. For fractal dimensions D
between 2 and 2.5, the relation between R and d shown
in figure 6(c) follows the behavior described in equation
(8) extremely well, while for higher fractal dimensions
the slopes are slightly lower than expected.

In figure 6, the range of power law exponents
obtained from the ‘‘summit search’’ analysis of several
AFM images of rough polycrystalline silicon MEMS
surfaces are shown as shaded bands running across the
graphs. We see that these values are consistent with the
W-M fractal surface properties if we associate the AFM
images with low fractal dimensions (Ds=2.1–2.3). The
fractal dimensions of these AFM surfaces obtained
using PSD analysis varied for different length scales as
discussed earlier, with values ranging from non-fractal
values (e.g. Ds =1.77 as in figure 1) up to approximately
Ds =2.5.

3. Contact model

The multiscale nature of the MEMS surfaces revealed
by our analysis suggests that any useful contact model

must embody this multiscale character. Thus, in our
model, surfaces in contact are modeled with roughness
at multiple length scales. The asperities at the largest
length scale have the largest radii and height variation,
and upon these lies a second set of asperities with radii
and height variations smaller by a factor s>1 which we
call the scaling constant, and so on. Contact between
two rough surfaces was approximated by contact be-
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tween a smooth rigid surface and a single rough elastic
surface. This can be adjusted to represent the behavior
of two rough surfaces as desired [4].

Figure 7 shows how the total force on the first set of
asperities is divided into forces on asperities at smaller
length scales. If only the first scale were considered, then
the surface could be thought of as a Greenwood-
Williamson [2,3] surface with a given height distribution.
In any event, the total force is proportioned among each
contacting asperity at that length scale using an appro-
priate single asperity contact model.

In this algorithm, the rough surface is incrementally
advanced into the rigid flat countersurface to determine
the asperities at the coarsest length scale that make
contact. Then the exact approach distance is found by
interpolation via Newton’s method. This distance is
used to proportion the total force among all of the con-
tacting asperities, using an appropriate single asperity
contact model as discussed below. Thus, the total load
F is equal to the sum of the forces supported by the
contacting asperities at that length scale according to:

F ¼
Xn1
i¼1

Fi; ð9Þ

where n1 is the number of asperities at the first length
scale that are in contact. The actual contact area at this
length scale is given by:

A1 ¼
Xn1
i¼1

Ai: ð10Þ

At the next length scale, each of the loads Fi is pro-
portioned among the second generation asperities that
make contact such that the forces and areas are given as:

Fi ¼
Xn2;i
j¼1

Fi; j ð11Þ

Ai ¼
Xn1
i¼1

Xn2;i
j¼1

Ai;j ð12Þ

where n2,i is the number of second generation asperities
in contact that are located on first generation asperity i.

For example, considering this second scale of
roughness, the total force supported is obtained by
combining equation (9) and equation (11), whereas the
total contact area is given by equation (12). The forces
and contact areas at subsequent length scales are cal-
culated in the same fashion. This procedure can be
carried out for any number of desired scales of rough-
ness.

When no adhesion is included in the model, the Hertz
contact model [17] is appropriate. The single asperity
contact area-load relation obtained from the Hertz
model is:

A ¼ p
3R

4E�

� �2=3

L2=3: ð13Þ

In this equation, R is the asperity radius, E* is the
composite elastic modulus of the contact, and L is the
total load on the asperity.

There are several significant assumptions in our
hierarchical modeling approach. The first is that the
asperities are elastic. The second is that, within one
length scale, the mechanical response of an asperity is
not affected by its neighbors. The third is that the
roughness of finer length scales is small enough so that
the response of asperities at coarser length scales is
unaffected. This imposes limitations on the applicability
of our model, but allows us to capture and interpret the
effects of multiscale contact within these limitations. In
fact, by using sufficiently well-spaced generations of
asperities, the use of the Hertz model is justified,
whereas such an assumption is questionable in the case
of extremely finely-spaced scales of roughness, such as in
the W-M function with small c values.

A surface that appears to satisfy the third assumption
of our model is the Weierstrass-Mandelbrot function, in
the form given in equation (6), with sufficiently high c
value (>�4) to obtain adequate frequency (asperity size
scale) separation. TheW-M function withG andD values
given in figure 4 and with c=10 was used to create such a
surface. Using an appropriate neighborhood size, the
locations, heights, and curvatures of the asperities pro-
duced by the largest cosine function were found by using
the ‘‘summit search’’ algorithm described above.

To investigate the effect of changing the scaling
constant, summits obtained from the W-M surface
described in the previous section were again used as the

Figure 7. Hierarchy of roughness and load distribution among

asperities at different length scales for the contact model we have

developed.
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first scale of roughness, and different scaling constants
s>1 were used to define the roughness at smaller length
scales. For example, for s=10, the asperity heights at
the second order of roughness are one-tenth of the
height of those at the first order, and have radii of
curvature that are one-tenth of those at the first order.
In the calculation L=10 lN and E*=200 GPa was
used. This E* value is in the upper range of reported
values for polycrystalline silicon. Figure 8(a) shows the
computed total contact area as a function of the number
of roughness scales, using different scale constants s. For
a given value of n, the lateral length scale of the asperity
size depends on s. For illustration purposes, we replot
the data in figure 8(a) using a common dimensionless
distance axis defined as 1/sn)1. Thus the largest scale has
an asperity dimension of 1.

Figure 9 shows the total area of contact versus the
total load applied to the surface, calculated for five
roughness scales using a scaling constant of s=5. The
behavior is very close to linear, and a power law fit
shows that the area is related to the total load by a
power of 0.94. This is reminiscent of the well-known
result from the G-W model whereby the contact area
scales nearly linearly with load for a collection of
equally-sized asperities randomly distributed about a

mean height. The difference in the two models is that
G-W model uses a single scale of roughness [2]. In 1940,
Zhuravlev [3], making assumptions similar to G-W
model, found a similar dependence, namely A a L0.91.

For all scaling factors tested, the total contact area
shown in figure 8 decreases with increasing scales of
roughness, and appears to converge to well-defined
values, but those values are highly dependent on the
particular scaling factor chosen. In Appendix 1, we
further illustrate this effect using a simple calculation for
a set of Hertzian contacts at the same height. This effect
will be further discussed in the next section.

3.1. Constraints on smaller scale roughness features

A constraint that occurs with real surfaces is that the
number of smaller asperities that can be present on a
contacting asperity (i.e., a host asperity) at the larger
length scale is limited. In the example presented in fig-
ure 8, the finer scale contacts were assumed to be hex-
agonally close-packed on the contact area of the host
asperity, and a limit was introduced according to the
ratio (m) of the large asperity contact area to the average
of the small asperity contact areas. The number of small
asperity contact spots (Nmax) that would fit on the larger
contact area can be estimated by Nmax a m2, when m is
greater than 3. We call this the close-packed constraint,
and it imposes an upper bound to the possible numbers
of asperities at successive scales.

Another limitation of the example presented in fig-
ure 8 is that the same scaling constants are used for both
the heights of the asperities and radii of curvature for
the asperities. In reality, the heights and radii scale dif-
ferently, as seen in the surface analysis results shown in
figure 2. The data of figure 2 suggest a better, more
realistic way to model multiscale roughness driven by
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the experimental observations of the surface properties,
as follows. The trends seen in figure 2 give scaling con-
stants for the heights and radii for the AFM image
analyzed. The corresponding power relations are h a
d 0.6, N a d )1.87, and R a d1.25 . With s used as the scaling
constant for length, the neighborhood size in figure 2 is
scaled by d2=d1/s. The asperity heights for the sub-
sequent smaller scale are obtained from the heights of
the previous scale by sh=s0.6 so that h2=h1/sh. Similarly,
the radii are scaled by sR=s1.25, and the number of
asperities per unit area scales by sN=s)1.87 . We call this
the asperity-density constraint, which originates from
real experimental analysis.

The information regarding number of asperities per
unit area provides a more realistic value for the number
of contacts that will be present on the tip —or contact
area— of the larger scale host asperity. If we know the
contact area at a particular length scale, then we can
multiply this with the asperity density at the smaller
length scale to obtain a limiting value for the number of
asperities that can be present on the host asperity.

We select from the AFM image a set of heights and
radii by selecting a neighborhood size which yields a
reasonable number of asperities (e.g., N a 100), and we
call this the roughness template. Then the scaling con-
stants for h, R, N can be used to calculate the geometry
and density of asperities at other scales. In other words,
the roughness template is scaled up to provide coarser
details of roughness, and is scaled down to obtain finer
details of roughness.

The silicon MEMS surface analyzed in figures 1 and 2
was used as an example. The template scale was found
using a summit search box size of�450 nm,which yielded
103 summits. The summits obtained show a distribution
close to an exponential, which is the same distribution
used in previous models in literature such as the G-W
model [2].

The power law relations cited earlier were used to
calculate scaling factors for radii, height and asperity
density for different s values. A load of 1 mN and a
modulus of E*=200 GPa was used. Figure 10 shows
the prediction of the true contact area as a function of
the smallest length scale used in the computation. In
figure 10, filled marks represent the results where the
number of sub-scale contacts is constrained by a close-
packed distribution assumption, and empty marks rep-
resent the results where the experimentally obtained
asperity density constraint method is used.

The calculations shown in figure 10 are not continued
to scales lower than about 1 nm, as this length ap-
proaches atomic spacing. Ten times the equilibrium
atomic spacing is a reasonable estimate for the limiting
value of the elasticity (Hertz) solution [14], and this
provides an approximate value where to terminate the
calculations (i.e., �4 nm).

The estimated true contact area at the smallest length
scale for the asperity-density approach (�104 nm2) is

smaller than the close-packed approach (�3 · 104 nm2),
as expected. It is also seen that the contact area con-
verges to a limit faster in the asperity-density method. It
was observed many times in the asperity density
approach that there would be only one small asperity
present on the tip of the larger host asperity.

When two consecutive scales are considered, the
contact behavior of the intermediate size peaks between
those two scales is being neglected. The case of the
asperity-density constraint is affected more by this, as
the number of small asperities that can be added to
compensate for the lack of intermediate size asperities is
limited. Thus the calculated area ends up being a lower
bound estimate, which is imposed by the experimental
data. The close-packed distribution constraint results in
a theoretical upper-bound for the contact area that can
be calculated in the model, as geometrically there can be
no more asperities present in contact. So the results of
our model can be taken as an estimated range for the
real contact area.

In the calculation shown in figure 10, where the
scaling constants for radii and heights are more realistic,
we see that using different scaling constants (s=2.5)5)
does not affect the true contact area as strongly as in
figure 8, where the scaling constants for radii and
heights were the same. Independence of the contact area
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from the scale constant shows that we can get away with
a ‘‘crude’’ model where large scaling constants and only
a few scales are used to represent the contact behavior.
The model surface need not be carrying all the rough-
ness frequencies, thus, for example, a Weierstrass-
Mandelbrot surface with a high c value can be used for
simplicity.

The same AFM image is analyzed with the procedure
described by McCool [4,18] which uses a Greenwood-
Williamson approach, i.e., has one scale of roughness,
with E*=200 GPa, L=1 mN. The analysis gives a
nominal asperity radius of 280 nm, summit density of
4.6 · 10)5 nm)2 and a summit height standard devia-
tion of 2.55 nm. The true contact area estimate from this
method is on the order of 105 nm2 when the apparent
contact is 10 lm by 10 lm. This analysis is described in
[18] for the same surface.

The nominal asperity radius of 280 nm corresponds
to a neighborhood size of �70 nm in our ‘‘asperity
search’’ analysis shown in figure 2. The contact area
estimate of 105 nm2 is close to the close-packed area
constraint result for this length scale, but exceeds the
total contact area we determine (by considering all
length scales down to the atomic limit) by a factor of �5.
Another key difference between McCool analysis and
our model is that we allow the force to be supported at
smaller contact areas, resulting in higher stresses at
contact points.

4. Conclusions

Roughness of polycrystalline silicon MEMS surfaces
is strongly scale-dependent. Analysis of summits for
AFM scans of actual MEMS surfaces shows that the
height, density, and geometry of the summits as deter-
mined by a ‘‘search and fit’’ routine have a power law
relationship with neighborhood search size.

The analysis of a test surface that has roughness
limited to a small range of spatial frequencies, and
analysis of a surface with a single scale of roughness,
shows that the summit search procedure captures the
geometry of the smallest summit features when a surface
has a well-defined length scale below which there are no
additional details of roughness. When the same analysis
is performed on AFM data of a polycrystalline silicon
MEMS surface, additional details of roughness emerge
even at the smallest neighborhood sizes considered. In
other words, no convergence to a uniform value for the
height, density, and geometry of summits is observed
even at the smallest experimentally accessible lateral
length scale (�2 nm).

The power law behavior obtained from AFM images
is similar to fractal W-M surface results. However, we
find that these MEMS surfaces exhibit a range of spec-
tral frequencies over which the surface is not fractal (the
slope of the PSD is less than )3), yet the surface is still

multiscale in nature (no well-defined summit radius, for
example). Although the validity of the method still needs
to be explicitly proven, the results indicate that as an
alternative to the conventional power spectral density
method [8] for determining the fractal dimension of a
fractal surface representation, a ‘‘summit search’’
methodology, which is intuitively more straightforward
and potentially more versatile, may be used for
describing surface geometry. The appropriate method to
select other parameters needed for analytical represen-
tations of fractal surfaces (such as the W-M function,
where c and G must be determined) have not yet been
addressed here.

A contact model is developed using multiple length
scales for roughness. The smaller roughness scales are
successively modeled as asperities that are superposed
on the asperities of the next larger scale. The total
contact area predicted with elastic Hertz behavior ap-
proaches a limit with increasing number of roughness
scales.

The calculated area of contact is dependent on the
scale constant s that is used when the radii and the
heights of the asperities are scaled with the same con-
stant. When the correct scale dependence of the heights
and radii are used, as obtained from the analysis of
summits from AFM images, the contact area calcu-
lated does not depend on the scaling constant s. This is
important as it shows that a simpler surface represen-
tation with large scale constants and fewer scales is still
valid. This suggests as well that a large c value in
Weierstrass-Mandelbrot function can be used to gen-
erate a fractal surface model for simplicity. Separation
of length scales renders the use of Hertzian contact
mechanics across these length scales more readily
believable.

The number of small scale contacts within a large
contact area is constrained using two different methods:
The experimental asperity density constraint and the
close-packed distribution assumption. The latter gives a
higher area estimate from the former. Together these
two values can be thought as the upper and lower bound
estimates for the contact area.

The next step in this modeling approach would be to
include adhesion, i.e., JKR [19] and DMT [20] single
asperity contact models. Preliminary work regarding
these models shows that a technique must be used that
accounts for the adhesion associated with the large
asperities when considering a small scale of roughness.
The adhesion models mentioned account for adhesion
only at the contact area [19] or around it [20]. When
looking at a roughness scale, the surface forces on the
material between two asperities are disregarded. If this is
not considered then a force imbalance occurs.

Plasticity also needs to be added to the model. First
of all, the small asperities will likely experience yielding,
and secondly the material properties, specifically the
yield strength, may vary with different length scales.
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The ‘‘summit search’’ method and the contact model
presented constitute an intuitive approach to
understand the multiscale nature of surfaces, making
use of real images of MEMS surfaces, and numerical
computation.
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5. Appendix

5.1. Decrease of contact area with increasing number of
length scales

To further investigate the effect reported in Section 3,
whereby the contact area decreases with an increasing
number of length scales, we use a Hertzian contact
model for the following two simple cases: (1) a single
asperity interface consisting of one asperity with radius
R contacting a rigid flat surface under load L, and (2) a
multi-asperity contact where n identical asperities all at
the same height and radius r £ R contact a rigid flat
surface, again under load L. These are illustrated in
figure A1. In the second case, the area-load relation in
equation (13) becomes

An ¼ np
3r

4E�

� �2=3
L

n

� �2=3

: ðA1Þ

Figure A2 shows the area ratio An/A from combin-
ing equation (13) and equation (A1), as a function of
the radius ratio which is analogous to the scale factor s
for the multiscale model. The number of asperities used
in the calculation was n=100. For a high scaling
constant, i.e., r << R, the ratio for the n-asperity
model is small, that is, the total contact area for 100
asperities is much smaller than for a single asperity at
the same load. However, this area increases as r ap-
proaches R. In other words, for a large scale factor,
dividing a single asperity into multiple asperities, with
the same total load, decreases the total contact area
significantly.

It must be noted that if s (or, for this example, the
radius ratio) becomes too small, the assumption of
asperities at one scale not affecting asperities at the
larger scale breaks down.
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