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Abstract To describe adhesion between bodies of known

arbitrary shape and known elastic properties, contact me-

chanics models require knowledge or assumptions of a

minimum of two parameters, the strength of the adhesive

interaction (characterized by the intrinsic work of adhesion

Wadh,int) and the length scale of the interaction (described

by the range of adhesion z0). One parameter can easily be

measured if the other is estimated or assumed, but ex-

perimental techniques for determining both simultaneously

are lacking. Here, we demonstrate a novel technique—

called the Snap-in/pull-off Numerical Adhesion Parameter

method—for experimentally determining both parameters

simultaneously using adhesion measurements performed

with an atomic force microscope probe whose geometry

has been characterized. The method applies to materials

that approach the rigid limit (high elastic moduli). The

technique is explained and validated analytically for simple

shapes (flat punch, paraboloid, and right cone), and trends

in results are compared against prior literature. This ap-

proach allows calculation of the adhesion parameters to

enable prediction of adhesion behavior, including for ad-

vanced technology applications.

Keywords Adhesion � Nanoscale � Work of adhesion �
Range of adhesion AFM � TEM

1 Introduction

The fundamental physics governing adhesion are well un-

derstood; however, the direct measurement of adhesive

parameters between two surfaces remains difficult, espe-

cially when surfaces are not simply shaped (e.g., smooth

spheres or planes). Yet accurate knowledge of adhesion

between technologically relevant surfaces is critical for

research, development, and commercialization of nanos-

cale devices.

1.1 Mathematical Parameters Describing Adhesion

Between Planar Surfaces

The work of adhesion Wadh between two surfaces is the

energy per unit area required to separate two planar sur-

faces from equilibrium contact to infinite separation. It is

defined as:

Wadh ¼ ci þ cj
� �

� cij; ð1Þ

where ci is the surface energy of surface i and cij is the

interfacial energy between surfaces i and j. In accordance

with prior literature on adhesion and roughness [1], the

intrinsic work of adhesion Wadh,int is the work of adhesion

between perfectly flat, planar surfaces. While Wadh,int is a

continuum concept, it maps robustly onto an atomistic

description of a perfectly flat, single crystal surface. The
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effective work of adhesion Wadh,eff is defined as the work of

adhesion for the same material pair in the case where one

or both planar surfaces contain local surface roughness.

The distinction between Wadh,int and Wadh,eff is shown

schematically in Fig. 1. The Wadh,int is determined by the

identity of the materials in contact and the environment,

whereas Wadh,eff is a function of Wadh,int and the local

surface topography. For hard, nonconforming materials,

Wadh,eff is typically much smaller than Wadh,int because the

roughness increases the effective separation between the

materials and decreases their area of intimate contact. This

increased separation makes the interfacial energy cij larger

(i.e., the interface is less energetically favorable since the

roughness prevents it from adopting a more favorable state

of intimate bonding). This distinction is drawn because

many experimental techniques exist to measure Wadh,eff

(for example, using microfabricated beam tests [2]), but

generally applicable techniques to deduce the Wadh,int do

not exist. The latter quantity Wadh,int is required for the

prediction of adhesion in a particular scientific or techno-

logical application. Therefore, this paper offers an ex-

perimental method for determining Wadh,int for stiff,

nonconforming materials.

Further, while knowledge of Wadh,int is useful, it is in-

sufficient for prediction of adhesive force given an arbi-

trary contact geometry. Rather, a complete description of

adhesion using continuum contact mechanics requires—at

a minimum—knowledge of two parameters that describe

the force–separation interaction of the materials: the

strength of adhesion, such as Wadh,int; and the length scale

of adhesion, such as z0. Physically, z0 describes the equi-

librium separation distance between perfectly flat surfaces,

i.e., the separation distance at which their interaction force

is zero. When only two parameters are used to describe the

adhesive interaction, z0 will also describe the length scale

of the interaction. Accordingly, in many mathematical

descriptions of adhesion (for instance, Refs. [3–6]), z0 is

presented and used as the governing parameter to scale the

distance over which adhesion acts for a particular material.

Therefore, the parameter z0 is referred to in this paper as

the ‘‘range of adhesion,’’ (in accordance with J.

A. Greenwood [3], who calls it the ‘‘range of action of the

surface forces’’). When combined with knowledge of the

shape and elastic properties of the bodies, a complete de-

scription of the contact mechanics behavior (pull-off force,

contact area, contact displacement, and contact stresses vs.

applied load) can be determined.

Other mathematical descriptions of adhesion use dif-

ferent variables, but still contain independent parameters

describing a strength of adhesion and a length scale, e.g., e
and r in Eq. 7.6 of [7] for Lennard–Jones, or A and D0 in

Eq. 13.37 of [7] for a van der Waals interaction with a

cutoff, or Wadh,int and h in [8]. In all cases, the two pa-

rameters from one description can be written in terms of

the two from another; Wadh,int and z0 have been written in

terms of e and r in [7], in terms of A and D0 in [7], and in

terms of Wadh,int and h in [4]. It has been shown [9, 10] that

the adhesion between realistic shapes depends primarily on

choice of parameters and only secondarily on the exact

form of the model. The work on adhesion and roughness by

Persson et al. [1] requires only one parameter, Wadh,int, but

assumes that all adhesion is taking place at the contact

interface, with no adhesive interaction for material that is

near to contact, but not touching (equivalent to the JKR

limit of contact [8]). Their method can be generalized to

materials outside of this limit, but requires an additional

description of interaction forces at nonzero separation and

thus knowledge of the length scale of these interactions (as

discussed in [11]). Further, their method applies only to

surfaces with self-affine topography. In summary, while the

present paper uses the specific adhesive framework of

Greenwood [3] and others [4–6], the results can be gen-

eralized to measure the relevant parameters required for

other mathematical two-parameter treatments of adhesion.

1.2 Contact Mechanics Models Describing Adhesion

Between Arbitrarily Shaped Surfaces

The adhesion models described above can all be generalized

to predict the adhesive force between bodies of arbitrary

shape. For the special case of adhesive spheres under limiting

case conditions, only Wadh,int is required [12]. For example,

(c)(b)(a)

micro/macroscopic adhesion
effective work of adhesion Wadh,eff

(a function of materials and geometry)
intrinsic work of adhesion Wadh,int

(a function of materials only)

conforming non-conforming

Fig. 1 Intrinsic and effective works of adhesion can differ sig-

nificantly. A micro/macroscopic adhesion test (a) typically measures

an effective value, due to roughness of the contact (b). The intrinsic

work of adhesion describes contact between perfectly flat surfaces

(c) and is therefore determined by the materials in contact
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stiff spheres with long-range adhesion (essentially, z0 is in-

finite) are described by the famous Derjaguin–Müller–To-

porov (DMT) model and compliant spheres with short-range

adhesion (z0 = 0) are described by the Johnson–Kendall–

Roberts (JKR) model. But even in these cases, the z0 pa-

rameter is required to determine the appropriate limit. Fur-

ther, in the more general case of bodies with nonspherical

shapes [13] or spheres that do not fall into one of the limiting

cases [8], knowledge of both Wadh,int and z0 is explicitly

required.

Specifically, adhesion in these more general cases is

mathematically described using a traction–separation re-

lation for two materials, which defines the adhesive stress

(force per unit area) between two flat surfaces as a function

of separation distance. Under the Derjaguin approximation

(discussed in more detail in [3]), the adhesion force be-

tween two bodies of arbitrary shape can be calculated by

integrating this traction–separation relation over the ge-

ometry of the contact.

One traction–separation relation in common use [3–6] is

the Lennard–Jones surface interaction. For two semi-infinite

parallel surfaces separated by a distance z, the normal stress

rnormal acting between the two surfaces is written in the

following form [3]:

rnormal zð Þ ¼ Fsurf

Asurf

¼ � 8Wadh;int

3z0

z0

z

� �3

� z0

z

� �9
" #

ð2Þ

where Fsurf is the total load acting on surfaces of area Asurf,

and the shape of the traction–separation relation is gov-

erned by Wadh,int and z0. This Lennard–Jones traction–

separation relation can be derived by integrating the Len-

nard–Jones interatomic potential over a flat surface [14].

Note that the attractive term (*z-3) is derived from van

der Waals attraction, which is the primary attractive force

in many technologically relevant systems (conductive and

electronically neutral materials in dry environments under

low applied loads). The repulsive term (*z-9) derives

from an empirical approximation to account for Pauli and

electrostatic repulsion of surface electrons. As discussed,

the adhesive force depends primarily on choice of Wadh,int

and z0 and only secondarily on the specific traction–

separation relation chosen [9, 10], so the present technique

should be generalizable.

1.3 Experimental Difficulties Involved in Measuring

Intrinsic Adhesion Properties

Despite the importance of accurate knowledge ofWadh,int and

z0, these parameters are difficult to simultaneously measure

experimentally. While pull-off forces can easily be mea-

sured—for instance by using an atomic force microscope

(AFM)—it is normally not possible to extract both Wadh,int

and z0 solely from this measurement. One approach is to

modify the AFM [15–18] or use other instruments like the

Interfacial Force Microscope to avoid snap-in [19]. How-

ever, if tip shape is not measured then only effective values

can be measured using these techniques. A typical approach

is to assume that the apex of the AFM tip is a sphere of known

radius Rtip; and then to apply adhesive-sphere contact me-

chanics (such as the DMT, JKR or Maugis models [8]) to

extract a work of adhesion (this method is described in Ref.

[20]). However, this approach requires assuming or other-

wise determining the length scale of the adhesive interaction

in order to select an appropriate contact model (as discussed

in [8]). Furthermore, this approach is highly sensitive to er-

rors in tip radius estimation. For nonspherical bodies, (such

as those described by high-order power-law shapes) the pull-

off force will also depend strongly on both Wadh,int and z0

[13]. Therefore, to investigate adhesion using an ex-

perimental measurement of pull-off force, it is necessary to

assume a value for one variable (usually z0) and then solve for

the value of the other (Wadh,int). The measured value of

Wadh,int is only as reliable as the assumption of z0. It is

common in contact mechanics literature to approximate z0

based on intuition and order of magnitude arguments

[21–23]. Further, a wide range of values for z0 have been

proposed or measured in previous literature, ranging from

0.15 [20] to 5 nm [5]. The present technique is proposed for

experimentally measuring both adhesion parameters simul-

taneously, in order to accurately establish these heretofore-

undetermined quantities.

1.4 Summary of the SNAP Method

and the Structure of this Paper

The Snap-in/pull-off Numerical Adhesion Parameter

method (or SNAP method) enables simultaneous determi-

nation of Wadh,int and z0, using geometrical characterization

of an AFM tip, coupled with adhesion measurements using

the same tip. More specifically, three measurements are

taken for a tip/sample pair: (1) the pull-off force; (2) the

snap-in distance; and (3) the fine-scale shape of the AFM

tip. Then, a traction separation law can be integrated over

the measured geometry with Wadh,int and z0 as fitting pa-

rameters. These parameters are adjusted until the calcu-

lated values for pull-off force and snap-in distance match

the measured values. The technique is valid for measuring

adhesion between any hard, nonconforming materials. The

novel aspects of this technique are: (a) the use of measured

tip geometry instead of the assumption of a shape that

matches an analytical function (sphere, flat punch, etc.) and

(b) the use of the snap-in distance as an additional data

point to enable simultaneous extraction of z0.

The structure of the present article is as follows—

Sect. 2 describes general ways of determining tip shape,
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snap-in distance, and pull-off force (the needed inputs to

calculate adhesion parameters). Section 3 discusses the

mathematical framework for extracting Wadh,int and z0 us-

ing these inputs, including an illustrative example. In

Sect. 4, a validation of this method is presented, where

adhesion parameters are calculated and back-calculated for

simple, geometric shapes (a flat punch, a paraboloid, and a

right cone); this ensures self-consistency, assesses self-

consistency of the technique, and allows comparison

against trends in previous literature. The final section

presents concluding remarks. Application of the present

technique to in situ experimental data is presented else-

where [24].

2 Technique for Determining Tip Geometry
and Adhesion Measurements

Several methods exist for characterizing the geometry of an

AFM tip, for instance: direct imaging using electron mi-

croscopy; direct imaging of the tip apex in an AFM using a

sharper AFM tip; tip reconstruction algorithms that extract

tip shape from AFM scans of a known surface; and de-

structive characterization (after adhesion testing) using

atom probe tomography. The present technique can be

applied regardless of how the AFM tip geometry is mea-

sured; however, we suggest that characterization using

high-resolution TEM represents the best combination of

ease and reliability. In particular, the AFM chip can be

mounted in the TEM using simple custom fixtures, as was

done in [25]. The apex of the tip can be characterized as

shown in Fig. 2a. Then, the two-dimensional outer contour

of the probe’s profile can be identified using contrast dif-

ferences in the TEM, as shown in Fig. 2b, for instance, by

using edge-finding software routines. A drawback of the

TEM method is that the three-dimensional tip shape is not

resolved, only a 2D profile. Using a goniometer or a tilting

stage can partially but not fully address this. Thus, for this

work, we create a three-dimensional shape (Fig. 2c) from a

two-dimensional contour by assuming the tip has a circular

profile at each resolved height increment. Note that this

does not assume global axisymmetry about a single axis of

rotation (as is true for a right cone), but rather assumes

local axisymmetry, with the potential for different axes of

rotation at different locations along the height (z-axis). It

further assumes that the probe is free of debris (which is

readily observed), and that the axis of the probe is pointing

downward (which is accomplished by rotating the 2D

profile prior to the analysis). For the tip shown in Fig. 2

and several other tips, TEM images taken at a variety of tilt

angles inside the TEM consistently demonstrate that the

assumption of circular cross section is reasonable over the

apex region of the tip where the adhesion forces are acting,

except in cases where debris is visible or immediately after

a large fracture event has occurred along a defined crys-

tallographic plane. This has been confirmed in another

study [26] by comparing TEM images to tip shapes de-

termined through AFM scans using numerical tip recon-

struction algorithms. In the case of multiple protrusions on

the end of the tip, this assumption of local axisymmetry is

assumed to apply separately to each.

Once the AFM probe has been characterized, adhesion

tests are conducted using methods common in atomic force

microscopy [27], as shown in Fig. 3. These adhesion tests

provide two independent pieces of information about the

force of interaction between the tip and sample. First, the

measured pull-off force (Fpull-off) yields the maximum at-

tractive force that occurs between the two bodies. Second,

the measured snap-in distance (dsnap-in) yields the gradient

of the force–distance curve at a known separation distance.

In particular, the snap-in event (well known in AFM) oc-

curs when the gradient of the interaction force between the

two surfaces exceeds the spring constant klever of the can-

tilever [27]. At larger separation distances, instantaneous

fluctuations in separation are damped out by the restoring

force of the cantilever (stable equilibrium). The snap-in

point represents the transition to unstable equilibrium,

where slight perturbations in separation lead to a reduction

in system energy and cause the tip to accelerate irreversibly

5 nm(a)

(b)

(c)

Fig. 2 Lattice-resolved images of AFM tips (a) can be obtained

using a transmission electron microscope. The apex of the tip can then

be traced (manually, or using image processing routines) to yield its

outer profile (red line). The two-dimensional profiles were integrated

using a method of disks (b) to create a three-dimensional shape (c),

from which the interaction was calculated (Color figure online)
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toward the surface. Thus, if klever is known, then the gra-

dient of the tip/sample interaction force (equal to the spring

constant of the cantilever) is known at a separation distance

equal to dsnap-in. Where possible, the adhesion parameters

should be measured multiple times and averaged. Thermal

fluctuations, instrumental drift, and local variations in the

substrate surface can cause variability in the measured

quantities. Rate-dependence of pull-off and viscoelasticity

play a large role for softer contacts, but are not as important

for stiff contacts.

3 Mathematical Technique for Determining
Adhesion Parameters

The two values (Fpull-off and dsnap-in) measured in the ad-

hesion test provide two independent pieces of information

about the interaction between the tip and sample: the max-

imum attractive force and the gradient of the interaction at a

specific tip-sample separation distance. For a given tip ge-

ometry, if Wadh,int and z0 are known then Fpull-off and dsnap-in

can be calculated—as discussed in Sect. 3.1. Alternatively

(and more commonly), if Fpull-off and dsnap-in are known,

then Wadh,int and z0 can be calculated—as discussed in

Sect. 3.2.

3.1 Calculating Fpull-off and dsnap-in from Known

Values of Wadh,int and z0

The adhesive force Ftip/sample is calculated at many differ-

ent values of tip/sample separation distance d by breaking

the tip into differential elements of surface, as shown

schematically in Fig. 4a, and using the Lennard–Jones 3–9

traction–separation relation (Eq. 2) to calculate adhesive

stress on every element. The element/element separation is

zsep = ztip ? d, where ztip is the local height of that ele-

ment; the contribution from all differential elements is

summed to yield the total interaction force. Numerically,

this is calculated as follows:

Ftip=sample ¼
Z

Area

rnormal zsep

� �
dA ¼

Z2p

0

Z1

0

rnormal zsep r; hð Þ
� �

rdrdh

¼
Z1

0

8Wadh

3z0

z0

ztip þ d

� �3

� z0

ztip þ d

� �9
" #( )

2prdr

:

ð3Þ

To evaluate this, ztip, the vertical distance from the lowest

point on the tip to other points on the tip is known from the

TEM imaging and Ftip/sample is calculated as a function of d.

In this way, predicted force–distance curves can be calcu-

lated. The value of Fpull-off is typically determined by the

point of minimum force, except when this occurs at d\ z0;

in these cases, Fpull-off = F(d = z0) as an approximation in

order to avoid a computational singularity. The value of

dsnap-in is determined by the separation distance at which the

gradient of the force curve is equal to the spring constant

klever of the cantilever, i.e.,
oFtip=sample

od

���
dsnap�in

¼ klever. The value

of klever can be determined using a variety of methods [28].

Using the predetermined tip shape (as shown in Fig. 4a),

we can numerically integrate the traction–separation rela-

tion (Eq. 3, shown in Fig. 4b) to calculate the tip/sample

interaction force at every separation distance. From this tip/

sample force–distance curve (Fig. 4(c)), we can calculate

the predicted values of Fpull-off and dsnap-in that correspond

to the input values of Wadh,int and z0.

3.2 Extracting Wadh,int and z0 from Known Values

of Fpull-off and dsnap-in

Above, Fpull-off and dsnap-in were calculated for input values

of Wadh,int and z0. If experimental values have been deter-

mined for Fpull-off and dsnap-in, then Wadh,int and z0 must be

Attractive
non-contact

regime

Repulsive
contact

regime

sn
ap

-in

pu
ll-

of
f

Fpull-off

Lever-sample
distance

Measured
force

sharp tip
 m

ounted 

planar
substrate

(a) (b)Fig. 3 Pull-off force and snap-

in distance can be easily

obtained using a standard

atomic force microscope

(AFM), a schematic of which is

shown in (a). A canonical force

curve is shown in (b), including

the magnitude of the pull-off

force Fpull-off. By dividing the

force change at snap-in by the

cantilever spring constant, the

snap-in distance dsnap-in can be

calculated
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calculated. There is no analytical expression for extracting

adhesion parameters (Wadh,int, z0) from known values of

Fpull-off and dsnap-in. Rather, once values have been deter-

mined for Fpull-off and dsnap-in, a search algorithm must be

used to find best-fit values of Wadh,int and z0. To accomplish

this, candidate values for (Fpull-off, dsnap-in) are calculated

using a range of values for (Wadh,int, z0)—typically

Wadh,int = [0.001, 1] J/m2 and z0 = [0.05, 1.1] nm. The

correct values of (Wadh,int, z0) are chosen as those where the

calculated values of (Fpull-off, dsnap-in) best match the input

values. For general arbitrarily shaped tips, there will only

be one specific pair of (Wadh,int, z0) that make the predicted

values of Fpull-off and dsnap-in match the experimental val-

ues; we take these parameters to be the correct values of

Wadh,int and z0.

To clearly illustrate the method, an example is shown in

Fig. 5 for a tip with arbitrarily chosen values of pull-off

force and snap-in distance. Note that this is simulated data

used for purposes of illustration only; to see the method

applied to experimental data, refer to Ref. [24]. Using the

tip profile from Fig. 2, force–distance curves, like those

shown in Fig. 4c, were calculated for a variety of input

pairs (Wadh,int, z0). From these curves, values of pull-off

force Fpull-off and snap-in distance dsnap-in were calculated

for each input pair of (Wadh,int, z0). These were

compared against the chosen values of Fpull-off = 5 nN and

dsnap-in = 1.8 nm (which otherwise would be measured in

the experiment). Pull-off forces corresponding to a wide

range of (Wadh,int, z0) pairs are plotted in Fig. 5a. It is

apparent that several different pairs of values can

d
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Fig. 4 Numerically, the traced tip profile (a) is broken into differ-

ential elements (indicated schematically with horizontal black bars),

each of which has a separation from the surface equal to zsep. The

Lennard–Jones surface potential [Eq. 2, shown in (b) (with

Wadh,int = 0.25 J/m2, z0 = 0.2 nm)] is applied to each element. As

d is varied, the tip/sample interaction force Ftip/sample can be

calculated at each position (c). From these, the predicted pull-off

force and snap-in distance can be calculated for each pair of values for
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0.35 J/m2

0.30 J/m2
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0.15 J/m2

0.10 J/m2

(b)(a)

Fig. 5 The present method is demonstrated for a real tip (shown in

Fig. 2) using artificially chosen values of pull-off force and snap-in

distance. Pull-off force values for a wide range of (Wadh,int, z0) pairs

are shown in (a)—these are compared against the ‘‘measured’’ value

of pull-off force (black, dashed line). It is apparent that the solution is

not unique—the four circles indicate different possible pairs of

(Wadh,int, z0) that accurately predict this pull-off force for the given tip

geometry. In (b), circles of corresponding color are calculated for the

same four pairs of (Wadh,int, z0) that were identified in (a). Three of the

four do not match the snap-in distance, while the fourth does. Thus, in

this example, Wadh,int = 0.25 J/m2 and z0 = 0.2 nm (Color figure

online)
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accurately describe the measured pull-off force. This

demonstrates that Wadh,int and z0 cannot be simultaneously

determined using pull-off force alone, as previously dis-

cussed. The novel aspect of the present method is that the

snap-in distance is used as an independent measure of

adhesion. Figure 5b shows the calculated snap-in distance

for corresponding pairs of (Wadh,int, z0). As shown, there is

only one pair of values (Wadh,int, z0) that accurately de-

scribes both pull-off force and snap-in distance. Note that

since Fig. 5 is for demonstration purposes, only seven

different values of Wadh,int and eleven values of z0 are

shown; when this method is applied to real data, an auto-

mated algorithm is used to explore the Wadh,int - z0 pa-

rameter space to find the best-fit values.

The first assumption of this method is that the tip is

rigid, and therefore the tip shape is unchanged throughout

the adhesion test. This renders the method equivalent to

applying the so-called ‘‘Bradley limit’’ for spheres [12]; it

applies for high-modulus materials and light loads (where

the deformation due to strain is small). More specifically,

this is expected to hold for bodies that are toward the

DMT-like limit, where the adhesive attraction is assumed

to not significantly distort the shape of the body. For

spheres (mathematically modeled as paraboloids), a Mau-

gis [8] parameter k\ 0.1 results in DMT-like behavior.

Note that transition parameters exist for other geometries

(such as K for power-law shapes) [13], but Grierson et al.

show in Fig. 5 of [5] that the range of validity of the rigid

approximation is similar for paraboloids (power-law ex-

ponent n = 2) and for other shapes (n[ 2). Therefore, to

assess the applicability of the present technique for any

geometry, the Maugis parameter should be calculated (for

instance, using the approach discussed in [20]) and should

have a numerical value less than 0.1. Examples of materials

where the present technique is expected to apply include

metals and alloys, oxides, ceramics, inorganic semicon-

ductors, and hard carbon coatings. The technique will not

apply to biological materials or other soft materials such as

soft polymers, elastomers, or hydrogels.

The second assumption of this method is that solid–solid

adhesion is the primary contribution to total adhesion.

When a water meniscus is present, it will add an additional

adhesion force that is not explicitly accounted for here. In

vacuum or an anhydrous environment, a capillary will not

typically form. We also note that a meniscus is not auto-

matically present when one works in ambient conditions. It

has been shown that in some cases (e.g., with low-to-

moderate relative humidities, and/or with hydrophobic

materials), meniscus nucleation may not occur, and so

solid–solid adhesion will determine the adhesive behavior

(e.g., see Ref. [29]). In cases where a water meniscus does

exist, the local geometry at the apex will play an important

role and the present approach (high-resolution tip imaging,

and recording of the snap-in and pull-out distances) could

be further developed to help quantify how a meniscus

contributes to adhesion.

4 Validation of the Method Using Simple
Geometric Shapes and Quantification
of Uncertainty

In the present section, two simple calculations are per-

formed to validate the SNAP method. First, values of pull-

off force Fpull-off and snap-in distance dsnap-in are calculated

for simple geometric shapes assuming known values of the

work of adhesion Wadh,int and the range of adhesion z0. This

allows comparison of trends in results against prior lit-

erature and also illuminates advantages and disadvantages

of the method. Second, using only knowledge of the tip

shape and the values of Fpull-off and dsnap-in calculated

above, the Wadh,int and z0 values are extracted using the

search algorithm to verify that extracted values match the

input values of Wadh,int and z0 used above. The latter cal-

culation serves both as a check of self-consistency and also

a quantification of uncertainty in the method.

4.1 Calculating Tip/Sample Force–Distance Curves

Using Probes with Simple Geometric Shapes

Force–distance curves were computed for three different

reference tips with shapes described by three simple ana-

lytical functions: a cylindrical flat punch; a paraboloid (i.e.,

a two-dimensional parabola that has been revolved about

its central axis); and a right cone. The three shapes are

shown in Fig. 6 and can be mathematically represented

using power-law functions with exponents of n ? ?,

n = 2, and n = 1, respectively. The widths of these tips

were chosen to achieve values of Fpull-off that were similar

and realistic (50–70 nN) for mid-range adhesion pa-

rameters, i.e., Wadh,int = 0.55 J/m2 and z0 = 0.5 nm. This

yielded a flat punch of end radius 4 nm; a paraboloid de-

fined [12] by ztip = r2/(2Rtip) with Rtip = 20 nm; and a

right cone with an opening half-angle of 84�.
These shapes were chosen as they represent extremes of

tip shape. The flat punch represents the bluntest possible

tip. The force–distance curve for this tip represents the

form of the underlying Lennard–Jones surface potential

(differing only by a constant representing the surface area

of the punch). The paraboloid was chosen as it is used in

many contact mechanics models as an approximation for a

sphere [12]. It represents an intermediate level of sharpness

between a flat punch and a cone. The right cone represents

the extreme of the sharpest possible probe, converging to a

single point at the apex. This unphysically sharp analytical

shape is useful for demonstrating trends and also motivates
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one of the constraints imposed on the present method.

Figure 6 shows the force–distance curves for each shape,

calculated using the parameters (Wadh,int = 0.25 and

0.50 J/m2, z0 = 0.25 and 0.5 nm), with snap-in distances

and pull-off forces indicated for a spring constant of

k = 0.1 N/m. These plots are included to show the effects

of Wadh,int and z0, and the differences in behavior for each

shape.

The dependence of pull-off and snap-in on the range of

adhesion z0 is more complex and depends strongly on the

geometry of the tip. However, all trends shown here can be

compared with recent publications [5, 13] discussing ad-

hesion of tips with power-law profiles. For a flat punch

interacting with a flat surface through a Lennard–Jones

surface potential, the pull-off force decreases as z0 is in-

creased. As noted above, a flat punch tip is equivalent to a

power-law shape with a very large power exponent

(n ? ?). The trend found here, of decreasing adhesive

force with increasing z0 for constant Wadh,int, agrees with

the trend shown in Grierson et al. [5]. for all shapes with

power-law exponent n[ 2. By contrast, for the parabolic

tip (a power-law shape where the power exponent n = 2),

the pull-off force is independent of z0. This agrees not only

with trends from Refs. [13, 20], but also with the predic-

tions of the Maugis-Dugdale model [8]. The pull-off force

agrees exactly with the prediction of the Bradley limit [12]

for rigid spheres and that of the DMT model: [12], namely

that the pull-off force is equal to 2pRtipWadh,int. Finally, for

Fig. 6 Force–distance curves were calculated for simple, geometric

shapes (shown at top): a flat circular punch (left column); a paraboloid

(center column); and a right cone (right column). Here, the tip/sample

interaction force is calculated over a range of tip positions d, with the

flat substrate located at d = 0. These force–distance curves are shown

(a–c) for two different values of the work of adhesion

(Wadh,int = 0.25, 0.50 J/m2) at a constant value of range of adhesion

(z0 = 0.5 nm). In (d–f), force curves are compared for two different

ranges of adhesion (z0 = 0.25, 0.5 nm) and a constant work of

adhesion (Wadh,int = 0.25 J/m2). The points on the curves corre-

sponding to pull-off and snap-in are labeled in each plot with circular

points assuming a cantilever spring constant of 0.1 N/m; values of

pull-off force (Fpull-off) and snap-in distance (dsnap-in) are explicitly

indicated in (a). Note that the legends in the left-most panels apply for

all panels in that row
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the conical shape, the pull-off force increases as z0 is in-

creased for a constant Wadh,int. This trend for a conical

shape (a power-law shape where the power exponent

n = 1) is in agreement with the so-called DMT-n limit

described by Zheng and Yu [13].

In summary, for the probe shapes shown in Fig. 6 and

other shapes tested (not shown), consistent trends of be-

havior hold: For shapes blunter than a paraboloid (n[ 2),

the pull-off force decreases as z0 increases; for shapes

sharper than a paraboloid (n\ 2), the pull-off force in-

creases with z0; and for a paraboloid (n = 2), the pull-off

force is unaffected by changes in z0. (Note that, for rigid

tips, the JKR limit (with its modified pull-off force) is not

reached.)

The dependence of pull-off force on adhesive range can

be understood as a competition between two factors: as the

range of adhesion is increased for a constant work of ad-

hesion, a larger section of the probe contributes to the

adhesive interaction, but the adhesive stress at a given

separation distance is decreased. This can be visualized in

Fig. 4b, where an increase in z0 stretches the curve along

the x-axis; in order to maintain a constant integrated area

(Wadh,int), the strength of the interaction at a given

separation (shown on the y-axis) must be decreased. The

‘‘winner’’ of this competition depends on the geometry of

the body. For blunt shapes with steep sidewalls—like a

punch—an increase in z0 decreases the pull-off force. This

is because relatively little additional material is interacting

due to the increased range of adhesion; instead, the primary

effect is simply to reduce the adhesive stress on the ma-

terial in close proximity. By contrast, for tapered shapes—

like a cone—the increase in material that is interacting

overwhelms the weakening of the adhesive stress and an

increase in z0 leads to a larger pull-off force. A parabola

represents the shape where these competing effects exactly

balance, regardless of the chosen traction–separation rela-

tion [21]. In this case, the pull-off force depends only on

the work of adhesion Wadh,int.

Another important result emerges from Fig. 6: Without

some modification, a simple integration of the Lennard–

Jones surface potential leads to an unphysical result for

ultra-sharp tips when the finite rigidity and strength of the

materials are considered. Specifically, for the punch and

parabola shapes in Fig. 6, the separation distance corre-

sponding to the minimum force (Fpull-off) is equal to or

larger than the equilibrium flat-on-flat separation z0.

However, for the cone shape, the separation at Fpull-off is

smaller than z0. Note that z0 rigorously designates the

Table 1 In order to check self-consistency and estimate uncertainty,

the following test was run: First, a range of values for Wadh,int and z0

were chosen (columns 2, 3); second, Fpull-off and dsnap-in were

calculated for a variety of tip shapes (columns 4, 5); third, reasonable

uncertainty was added to those calculated values of Fpull-off, dsnap-in

(columns 6, 7), then values of Wadh,int and z0 were extracted (columns

8, 9)

Tip shape description Input Wadh,int

(mJ/m2)

Input z0

(nm)

Calc. Fpo

(nN)

Calc. dsi
(nm)

Input Fpo

(nN)

Input dsi
(nm)

Calc. Wadh,int

(mJ/m2)

Calc. z0

(nm)

Flat punch (4.0 nm end

radius)

0.55 0.50 51 4.7 51 ± 2.6 4.7 ± 0.23 0.54 ± 0.04 0.50 ± 0.03

0.55 0.15 169 2.6 169 ± 8.5 2.6 ± 0.23 0.54 ± 0.06 0.15 ± 0.02

0.55 1.00 26 6.7 26 ± 1.3 6.7 ± 0.23 0.54 ± 0.02 1.0 ± 0.05

0.10 0.50 9.3 3.1 9.3 ± 0.5 3.1 ± 0.23 0.10 ± 0.01 0.50 ± 0.05

1.0 0.50 93 5.5 93 ± 4.7 5.5 ± 0.23 0.99 ± 0.06 0.50 ± 0.03

Paraboloid (20 nm radius) 0.55 0.50 69 7.7 69 ± 3.4 7.7 ± 0.23 0.55 ± 0.04 0.50 ± 0.03

0.55 0.15 68 3.4 68 ± 3.4 3.4 ± 0.23 0.56 ± 0.04 0.15 ± 0.02

0.55 1.00 69 12 69 ± 3.4 12 ± 0.23 0.55 ± 0.02 1.0 ± 0.03

0.10 0.50 13 4.4 13 ± 0.62 4.4 ± 0.23 0.1 ± 0.01 0.50 ± 0.04

1.0 0.50 125 9.4 125 ± 6.3 9.4 ± 0.23 1.0 ± 0.06 0.50 ± 0.02

Right cone (84� opening

half-angle)

0.55 0.50 54 16 54 ± 2.7 16 ± 0.23 0.56 ± 0.06 0.50 ± 0.02

0.55 0.15 16 5.0 16 ± 0.8 5.0 ± 0.23 0.57 ± 0.07 0.15 ± 0.01

0.55 1.00 106 28 105 ± 5.3 28 ± 0.23 0.56 ± 0.05 0.99 ± 0.05

0.10 0.50 9.8 7.1 9.8 ± 0.5 7.1 ± 0.23 0.10 ± 0.01 0.50 ± 0.03

1.0 0.50 98 20.4 98 ± 4.9 20 ± 0.23 1.0 ± 0.12 0.50 ± 0.03

Real tip Fig. 2 0.55 0.50 81 8.4 81 ± 4.1 8.4 ± 0.23 0.56 ± 0.04 0.50 ± 0.02

0.55 0.15 63 3.8 63 ± 3.2 3.8 ± 0.23 0.56 ± 0.04 0.15 ± 0.02

0.55 1.0 88 4.4 88 ± 13 4.4 ± 0.23 0.56 ± 0.04 0.99 ± 0.04

0.10 0.50 15 4.8 15 ± 0.7 4.8 ± 0.23 0.10 ± 0.01 0.50 ± 0.04

1.0 0.50 148 10 148 ± 7.4 10 ± 0.23 0.99 ± 0.06 0.50 ± 0.02
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equilibrium separation of surface area elements, but is not

the same as the equilibrium separation of tip and sample.

For a very sharp shape, this could lead to high compressive

stress in the closest elements—which are not accommo-

dated in the present method in which the bodies are as-

sumed to be rigid. To eliminate the unphysically large

Lennard–Jones stresses on the tip apex, an additional

constraint was added to the method: In calculating the pull-

off force, the tip-sample minimum separation distance is

not allowed to fall below the value of z0 chosen for that

simulation (i.e., d C z0). This simple constraint introduces

hard-wall repulsion when the minimum separation of the

bodies is z0. This avoids resorting to a much more complex

and time-consuming analysis that takes elasticity and

plasticity into account, such as in Ref. [30].

4.2 Extracting Adhesion Parameters Using

Standard Geometric Shapes: Checking Self-

consistency and Quantifying the Uncertainty

Above, values of Fpull-off and dsnap-in were calculated for

standard geometric shapes using specified typical adhesion

parameters (i.e., Wadh,int = 0.3 or 0.6 J/m2 and z0 = 0.1 or

0.3 nm). Here, the self-consistency of the method is

checked along with its uncertainty. For calculating the

uncertainty of the present method, a simple propagation of

uncertainty cannot be used since analytical expressions do

not exist. Instead, values for (Wadh,int, z0) were calculated

after the addition of reasonable uncertainty to the input

values of Fpull-off and dsnap-in.

First, Fpull-off and dsnap-in were calculated for a wide

range of possible adhesion parameters (Wadh,int = {0.1,

0.55, 1.0} J/m2 and z0 = {0.15, 0.5, 1.0} nm) for the three

geometric shapes discussed above and for a real tip. Then,

uncertainty was added to these calculated values of Fpull-off

and dsnap-in: ±5 % for Fpull-off due to uncertainties in

calibration of the cantilever spring constant [28]

and ± 0.23 nm for dsnap-in as an upper bound on the ac-

curacy of height measurements in an AFM [28] or TEM

[31]. Then, these values—with uncertainty—were used to

extract a range of Wadh,int and z0 for each case. All results

are reported in Table 1. The maximum variation in calcu-

lated values is reported in the final columns of Table 1, as

an uncertainty of the ‘‘calculated’’ Wadh,int and z0. It is

demonstrated that, for a wide range of adhesion values and

tip shapes, the uncertainty of the method is typically less

than 10 % for both Wadh,int and z0, and up to 12 % in

certain cases.

The primary conclusion from the calculations in this

section is that the present technique works well for a

wide range of shapes and physical parameters. The

method is self-consistent, and the trends in the results

agree with previously published reports investigating

adhesion of probes with standard shapes defined by

analytical functions. These results demonstrate that the

pull-off force and snap-in distance depend on the work

of adhesion and range of adhesion in significantly dif-

ferent ways for different classes of tip geometry. Further,

using reasonable values, the uncertainty in the present

method for determining Wadh,int and z0 from measure-

ments of Fpull-off and dsnap-in is estimated to be less than

12 % for both values.

5 Conclusions

A current limitation in prediction of adhesive forces stems

from a lack of reliable data for the intrinsic work of ad-

hesion Wadh,int and, even more so, for the range of adhesion

z0 for a given pair of materials. The novel advancement of

the present method is to introduce a technique for simul-

taneously measuring these two parameters for effectively

rigid materials. This technique requires knowledge of the

tip shape (which can be measured using a number of

techniques) and measurement of the pull-off force and

snap-in distance (both of which can be easily measured in

an AFM adhesion test). Then the experimental data can be

fit to the model to extract Wadh,int and z0. The method has

been validated analytically using simple geometric shapes

and is found to be self-consistent, reproducing trends in

behavior established in previous numerical and simulation

studies. The uncertainty in the technique has been esti-

mated at no more than 12 % for a wide range of reasonable

geometric and physical parameters, and is typically less

than 10 %. Overall, the method is widely applicable for

characterizing the adhesion parameters between a variety

of material pairs, as shown, for example, for a sili-

con/diamond interface [24].
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