Boomerang

Programmer’s Manual

J. Nathan Foster and Benjamin C. Pierce
with

Davi Barbosa, Aaron Bohannon, Julien Cretin, Michael Greenberg,

Alan Schmitt, Adam Magee, Alexandre Pilkiewicz, and Daniel Puller

September 2, 2009



Mailing List

Active users of Boomerang are encouraged to subscribe to the harmony-hackers mail-
ing list by visiting the following URL:

http://lists.seas.upenn.edu/mailman/listinfo/harmony-hackers

Caveats

The Boomerang system is a work in progress. We are distributing it in hopes that others
may find it useful or interesting, but it has some significant shortcomings that we know
about (and, surely, some that we don’t) plus a multitude of minor ones. In particular, the
documentation and user interface are... minimal. Also, the Boomerang implementation
has not been carefully optimized. It’s fast enough to run medium-sized (thousands of
lines) programs on small to medium-sized (kilobytes to tens of kilobytes) inputs, but it’s
not up to industrial use.

Copying

Boomerang is free software; you may redistribute it and /or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation; ei-
ther version 2.1 of the License, or (at your option) any later version. See the file COPYING
in the source distribution for more information.

Contributing

Contributions to Boomerang—especially in the form of interesting or useful lenses—are
very welcome. By sending us your code for inclusion in Boomerang, you are signalling
your agreement with the license described above.



Contents

Introduction
1.1 Lenses . . . . . . . .
1.2 Boomerang Overview . . . . .. ... .. ... ... ...
1.3 AnExampleLens . .. ... ... ... ... ... ... ... ... .. ...
14 GettingStarted . . ... ... ... o
Quick Start
21 Installation . . . . ... ... .. .
2.2 Simple Lens Programming . . . . ... ... ... ... .. ... . ... ...
221 UnitTests .. ... ... ... . .
222 TypeChecking . .. .. ... ... ... ... ... .. .. ...
23 TheComposersLens . . ... ... ... .. .. ... .. ............
23.1 BasicComposersLens . .. ... ... ... ...............
2.3.2 Resourceful ComposersLenses . . . . ... ... ... .........
24 Grammars . . . ...
241 Rewriting the Composers Lens with Grammars . . .. ... ... ..
2.4.2 Mutually-Recursive Grammars . . . . ... .. ... ... .......
Alignment
31 Tags . . . . . e
32 Keys. . . .
3.3 Learning withexamples . . . .. ... ... ... ... . ... . ... ...
33.1 Dictionary . . . ... ... ...
332 Greedy . .. ... ... e
333 Setlike . ... ... ...
334 Positional . . ... ...

The Boomerang Language

41 Lexing . ... ... ...
411 StringLiterals . . . . .. ... .. L
41.2 Identifiers . . .. ... ... ...
413 Regular Expressions . .. ... .... ... ... ... . ......
42 Parsing . . . .. . ...



421 Modulesand Declarations . . . . . . . . . .. ... 29

422 EXPressions . . . . . . ... 30

423 Identifiers . . . . . . . . . e 33

424 Parameters. . . . . . . . ... e e 34

425 SOrts ... e e e e 34

426 Patterns . . . . ... e e e 35

43 COCICIONS . .« v v v o e e e e e e e e e e e e 36
44 Operators . . . ... ... 36
5 The Boomerang Libraries 39
5.1 The Core Definitions . . . . . . . . . . . . . . . . e 39
51.1 Equality . ... ... ... .. .. 39

512 Booleans . . . . . . . . .. e 40

513 Integers . .. ... ... ... 40

514 Characters . . . . . . . . . e 40

515 Strings . . . . . .. 41

5.1.6 Regular Expressions . . ... ....................... 42

517 Tags . ... .. 45

5.1.8 Annotated Regular Expressions. . . . ... .. ............. 45

519 Equivalence Relations . . . ... ... ... . ... . ... . ... ... 47
5110 LensComponents . ... ... ... .. ... ... ........... 47
5111 Lenses . . . . . . o o i i e e e e e 50
5.1.12 ResourcefulLenses . . . . . . .. . .. . .. .. ... ... ... 56
5.1.13 Canonizer Components . . . . .. .. ... ... ............ 57
5114 CanonizZers . . . . . . v i v e e e e e 57
5.1.15 QuotientLenses . . . . . . . . . . ... e 60

5.2 TheStandard Prelude . . . . . . . . . . .. ... . .. ... 61
52.1 Regular Expressions . .. ... ... .. ... ... ....... 61

522 Lenses . . . . . . . . e e 63

52.3 LensPredicates . .. .. . .. . .. . ... ... 64

524 QuotientLenses. . . . . . . . . ... ... e e 65

525 Standard Datatypes . . ... ... ... ... ... .. .. 66

526 Pairs . . . . . .. e e e e 67
5.2.7 Lists of Lenses and Regular Expressions . . . . .. ... ........ 67

528 Lenses with List Arguments . . . . ... ... ... ........... 69

52.9 Miscellaneous . . . . . . . . .. 70

5.3 Lists . . . . e e e e e 71
53.1 Permutations . . . . . . . . . . ... e 73

54 Sorting . .. ... ... 75
5.4.1 PermutationSorting . . .. ... ... ... ... ... 0. 75

55 Commandlineparsing . . . . ... .. ... ... ... . .. o .. 77
56 Systemfunctions . ... ... ... ... L o 79



6 The Boomerang System

6.1 Running Boomerang . . . .

6.2 Running a Boomerang program . . . . .. ... ... ... ... . .. ...
6.3 Creating a Boomerang program . . . . ... ... ... .............

6.4 Navigating the Distribution

7 Case Studies



Chapter 1

Introduction

This manual describes Boomerang, a bidirectional programming language for ad-hoc, textual
data formats. Most programs compute in a single direction, from input to output. But
sometimes it is useful to take a modified output and “compute backwards” to obtain a
correspondingly modified input. For example, if we have a transformation mapping a
simple XML database format describing classical composers...

<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>
</composer>
</composers>

... to comma-separated lines of ASCIL...
Jean Sibelius, 1865-1956

.. we may want to be able to edit the ASCII output (e.g., to correct the erroneous death
date above) and push the change back into the original XML. The need for bidirectional
transformations like this one arises in many areas of computing, including in data con-
verters and synchronizers, parsers and pretty printers, marshallers and unmarshallers,
structure editors, graphical user interfaces, software model transformations, system con-
figuration management tools, schema evolution, and databases.

1.1 Lenses

Of course, we are not interested in just any transformations that map back and forth be-
tween data—we want the two directions of the transformation to work together in some
reasonable way. Boomerang programs describe a certain class of well-behaved bidirec-
tional transformations that we call lenses. Mathematically, a lens | mapping between a set



lens

source view
\ ¥
f put create
updated updated
source view

Figure 1.1: Lens Terminology

S of “source” strings and a set V' of “view” ones has three components:

l.get € S —V
lput ¢ V—85— 5
l.create €¢ V — S

get is the forward transformation and is a total function from S to V. The backwards
transformation comes in two flavors. The first, put, takes two arguments, a modified V'
and an old S, and produces an updated S. The second, create, handles the special case
where we need to compute a S from an V' but have no S to use as the “old value”. It fills
in any information in S that was discarded by the get function (such as the nationality of
each composer in the example above) with defaults. The components of a lens are shown
graphically in Figure 1.1.

We say that are “well-behaved” because they obey the following “round-tripping”
laws for every s € Sand v € V:

lput (l.get s) s =s (GETPUT)
l.get (lputvs)=v (PUTGET)
l.get (l.create v) = v (CREATEGET)

The first law requires that if put is invoked with an view string that is identical to the
string obtained by applying get to the old source string—i.e., if the edit to the view string
is a no-op—then it must produce the same source string. The second and third laws state
that put and create must propagate all of the information in their V' arguments to the S
they produce. These laws capture fundamental expectations about how the components
of a lens should work together.



1.2 Boomerang Overview

Boomerang is a language for writing lenses that work on strings. The key pieces of its
design can be summarized as follows.

e The core of the language is a set of string lens combinators—primitive lenses that
copying and delete strings, and ones that combine lenses using the familiar “regu-
lar operators” of union, concatenation, and Kleene-star. This core set of operators
has a simple and intuitive semantics and is capable of expressing many useful trans-
formations.

e Of course, programming with low-level combinators alone would be tedious and
repetitive; we don’t do this. The core combinators are embedded in a full-blown
functional language with all of the usual features: let definitions, first-class func-
tions, user-defined datatypes, polymorphism, modules, etc. This infrastructure can
be used to abstract out common patterns and to build generic bidirectional libraries.
We have found that they make high-level lens programming quite convenient.

e To correctly handle ordered data structures, many applications require that lenses
match up corresponding pieces of the source and the view. Boomerang allows
the programmer to describe these pieces (called “chunks”) and how the they are
aligned, choosing a method and defining the parameters for this method (such as
“weights” and “threshold”).

e Finally, in many applications, is often useful to be able to break the lens laws. For
example, when we process XML data in Boomerang, we usually don’t care whether
the whitespace around elements is preserved. Boomerang includes combinators
for “quotienting” lenses using “canonizers” that explicitly discard such inessential
features. We call lenses that use these features quotient lenses.

1.3 An Example Lens

To give a sense of what programming in Boomerang is like, we will define the lens imple-
menting the transformations between XML and CSV composers shown above.

First we define a lens c that handles a single <composer> element. It uses a number
of functions defined in our XML library, as well as primitives for copying (copy) and
deleting (del) strings, and for concatenating lenses (. ).

let ¢ : lens =
Xml.elt NL2 "composer"
begin
Xml.simple_elt NL4 "name"
(copy [A-Za-z ]+ . ins ", ") .
Xml.attr2_elt_no_kids NL4 "years"

7



"birth" (copy NUMBER . ins "-")
"death" (copy NUMBER)

Xml.simple_elt NL4 "nationality" (del [A-Za-z]+)
end

Using c, we then define a lens that handles a top-level <composers> element, en-
closing a list of <composer>. This lens is defined using the features already described, a
primitive for inserting a string (ins), as well as union (|) and Kleene star ().

let ¢cs : lens =
Xml.elt NLO "composers"
begin
copy EPSILON |
c . (ins newline . cC)=x*
end

We can check that this lens actually does the transformation we want by running its
get and put components on some sample data. First, let us bind the XML database to

a variable (to avoid printing it many times). The << ... >> is heredoc notation for a
multi-line string literal.

let original_c : string =
<<
<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>
</composer>

</composers>
>>

Now we test the get function...

test cs.get original_c =
<<

Jean Sibelius, 1865-1956
>>

...and obtain the expected result. To check the put function, let us fix the error in Sibelius’s
death date, and put it back into the original XML database...

test cs.put
<<

Jean Sibelius, 1865-1957
>>



into original_c

<<

<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1957"/>
<nationality>Finnish</nationality>
</composer>
</composers>
>>

... again, we obtain the expected result: the new XML database reflects the change to the
death date we made in the CSV string.

1.4 Getting Started

The best way to get going with Boomerang, is by working through the next “Quick Start”
chapter. It contains a lightning tour of some of the main features of Boomerang the lan-
guage and the system. A second step could be the section 3, which explains in details the
alignment in Boomerang. After that, we suggest exploring examples (see chapter 7), and
consulting the rest of this manual as needed. The chapter 6 shows how to run Boomerang,
how to create your own Boomerang program and how to run a Boomerang program.
Many more details can be found in our research papers on Boomerang (Bohannon et al.
[2008], Foster et al. [2008]) and on lenses in general (Foster et al. [2007], Bohannon et al.
[2005]), but take into account that some theorical changes have been made since these
papers were published. These papers are all available from the Boomerang web page.
Good luck and have fun!



Chapter 2
Quick Start

2.1 Installation

1. Download or build the Boomerang binary:

e Pre-compiled binaries for Linux (x86), Mac OS X (x86), and Windows (Cygwin)
are available on the Boomerang webpage.

e Alternatively, to build Boomerang from source, grab the most recent tarball
and follow the instructions in INSTALL.txt

2. Add the directory containing trunk/bin to your PATH environment variable.

e In Bash:
> export PATH=S$PATH:/path/to/trunk/bin

e InCsh
> setenv PATH SPATH:/path/to/trunk/bin

2.2 Simple Lens Programming

Now lets roll up our sleeves and write a few lenses. We will start with some very simple
lenses that demonstrate how to interact with the Boomerang system. The source file we
will work with is this very text file, which is literate Boomerang code. Every line in this
file that begins with #~ marks a piece of Boomerang code, and all other lines are ignored
by the Boomerang interpreter.

You can run the Boomerang interpreter from the command line like this:

> boomerang QuickStart.src

You should see several lines of output beginning like this

10



Test result:
"Hello World"
Test result:
"HELLO WORLD"

Let’s define the lens that was used to generate this text.
let 1 : lens = copy [A-Za-z ]+

This line declares a lens named '’ using syntax based on explicitly-typed OCaml (for
the functional parts, like the let declaration) and POSIX (for regular expressions). Its get
and put components both copy non-empty strings of alphabetic characters or spaces.

2.2.1 Unit Tests

An easy way to interact with Boomerang is using its syntax for running unit tests (other
modes of interaction, such as batch processing of files via the command line, are discussed
below). For example, the following test:

test l.get "Hello World" = ?

instructs the Boomerang interpreter to calculate the result obtained by applying the
get component of 1 to the string literal Hello World and print the result to the terminal
(in fact, this unit test generated the output in the display above).

Example 1. Try changing the ? above to Hello World. This changes the unit test from
a calculation to an assertion, which silently succeeds.

Example 2. Try changing the 2 above to HelloWorld instead. Now the assertion fails.
You should see:

File "./quickStart.src", line 68, characters 3-42: Unit test failed
Expected "HelloWorld" but found "Hello World"

When you are done with this exercise, reinsert the space to make the unit test succeed
again.
Now let’s examine the behavior of 1’s put component.

test (l.put "HELLO WORLD" into "Hello World") = ?

You should see the following output printed to the terminal:

Test result:
HELLO WORLD

which reflects the change made to the abstract string.

11



2.2.2 Type Checking

The get and put components of lenses check that their arguments have the expected type.
We can test this by passing an ill-typed string to 1’s GET component:

test (l.get "Hello World!!") = error

Example 3. To see the error message that is printed by Boomerang, change the error
above to ? and re-run Boomerang. You should see the following message printed to the
terminal:

File "./QuickStart.src", line 107, characters 3-35: Unit test failed
Test result: error
get built-in: run-time checking

error
c="Hello World!!" did not satisfy
((Core.matches_cex (Core.stype 1)) c); counterexample: string does not match [ A-

Notice that Boomerang identifies a location in the string where matching failed (HERE).
When you are done, change the ? back to error.

2.3 The Composers Lens

Now let’s build a larger example. We will write a lens whose GET function transforms
newline-separated records of comma-separated data about classical music composers:

let s : string =

Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

into comma-separated lines where the year data is deleted:
let v : string =
Jean Sibelius, Finnish

Aaron Copland, American
Benjamin Britten, English

2.3.1 Basic Composers Lens

The lens that maps—bidirectionally—between these strings is written as follows:

let ALPHA : regexp = [A-Za-z ]+
let YEARS : regexp = [0-9]{4} . "-" . [0-9]({4}
let comp : lens =

12



ALPHA . ", "
. del YEARS . del ", "
. ALPHA

let comps : lens = "" | comp . (newline . comp) *
We can check that comp works as we expect using unit tests:

test comps.get s = v
test comps.put v into s = s

There are several things to note about this program. First, we have use let-bindings to
factor out repeated parts of programs, such as the regular expression named ALPHA. This
makes programs easier to read and maintain. Second, operators like concatenation (.)
automatically promote their arguments, according to the following subtyping relation-
ships: string <: regexp <: lens. Thus, the string ", " is automatically promoted
to the (singleton) regular expression containing it, and the regular expression ALPHA is
automatically promoted to the lens copy ALPHA.

Example 4. Edit the comp lens to abstract away the separator between fields and verify
that your version has the same behavior on ¢ and a by re-running Boomerang. Your
program should look roughly like the following one:

let comp (sep:string) : lens =
let comps : lens =
let comp_comma = comp ", " in

or, equivalently, one that binds comp to an explicit function:

let comp : string —-> lens = (fun (sep:string) -> ... )

2.3.2 Resourceful Composers Lenses

The behavior of comps lens is not very satisfactory when the updated abstract view
is obtained by changing the order of lines. For example if we swap the order of Brit-
ten and Copland, the year data from Britten gets associated to Copland, and vice versa
(<< ... >>isBoomerang syntax for a string literal in heredoc notation.)

test comps.put

<<
Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American

>>

into

13



<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American

Benjamin Britten, 1913-1976, English

>>

<<
Jean Sibelius, 1865-1957, Finnish

Benjamin Britten, 1910-1990, English

Aaron Copland, 1913-1976, American
>>

The root of this problem is that the PUT function of the Kleene star operator works
positionally—it divides the concrete and abstract strings into lines, and invokes the PUT

of comp on each pair.

Our solution is to add new combinators for specifying reorderable “chunks”, assign
to them an method to match up these pieces (a specie) and tune it defining weights and

predicates. This is explained in details in section 3.

In our example we only need one useful case. We define a chunk using the function
dictionary and we define a key for each chunk (key ALPHA). The put function of the

following lens:

let ALPHA : regexp

[A-Za—-z ]+

let YEARS : regexp = [0-9]{4} . "-" [0-9]1{4}
let comp : lens =
key ALPHA . ", "
del YEARS . del ", "
ALPHA
let comps : lens = "" | <dictionary "":comp> . (newline

<dictionary "":comp>) *

restores lines using the name on each line as a key, rather than by position. To verify

it on this example, try out this unit test:

test comps.put
<<
Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American
>>
into
<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American

Benjamin Britten, 1913-1976, English

>>
=2

14



Note that the year data is correctly restored to each composer.

2.4 Grammars

Sometimes writing lenses using the core set of combinators is rather tedious, and we’d
like a more succinct way to encode simple transformations. For example, rearranging
data requires counting up individual lenses and using their positions on both sides of a
transformation to form a permutation ordering list. Also, lenses don’t always look like
the transformations they encode, and one cannot easily infer what a lens is doing without
running it on an example. Finally, we lack the ability to describe transformations rooted
in recursive patterns using a single lens.

Our solution to these problems is to express lenses using right-recursive grammars.
Each grammar is a set of named productions, each of which Boomerang compiles into a
lens of the same name. Each production in turn is a set of rules, possible transformations
whose union forms the definition of its corresponding lens.

A rule describes a transformation between a pair of sequenced expressions. An ex-
pression can be a lens defined in a previous grammar, a regular expression, or a string
literal. Each expression present on both sides of the transformation is labeled as a vari-
able. For example, suppose we want to write a lens swap that inverts a person’s first and
last name. Suppose we’d like it to rewrite the name “John Smith” as “Smith, John”.

Without grammars, we would have to write swap using a permutation:

let FIRST : regexp = [A-Za-z]+
let LAST : regexp = [A-Za—-z]+
let swap : lens =
lens_permute #{int}[2;1;0]
#{lens} [FIRST; ins ", " . del "™ "; LAST]

This isn’t too bad, but as you can imagine, the bookkeeping gets rather difficult as the
number of terms increases. Using grammars, we can more easily write the lens as:

let swap : lens =
grammar
name :: = fn:FIRST " " 1n:LAST <-> In ", " fn
end

Observe that labeled terms can be reordered, and unlabeled terms are present on only
one side of the transformation. To verify this lens works properly, we use the unit test:

test swap.get "John Smith" = "Smith, John"

Each production also can contain multiple rules, and each rule can be right-recursive
on the entire production. We can modify the swap lens to write a new lens swap_many
that operates on a semi-colon separated nonempty list of names as follows:

15



let swap_many : lens =

grammar
swap_many :: = fn:FIRST " " 1n:LAST <-> 1n ", " fn
| fn:FIRST " " 1In:LAST "; " ns:swap_many
<> 1In ", " fn "; " ns
end

Here, the first rule for swap_many is precisely the same as the rule for swap and
behaves the same way: it inverts the order of a single name. The second rule is a bit
more interesting. It inverts the order of a single name and concatenates the result with
another application of the production. The production will ultimately have to use the first
rule to terminate, since the second rule always insists on an additional application of the
production. We can test it on a list of two names:

test swap_many.get "John Smith; Jane Doe" = "Smith, John; Doe, Jane"

Finally, we can rely on the previously defined lens swap in order to write swap_many
more cleanly as follows:

let swap_many’ =

grammar
swap_many ::= n:swap <-> n
| n:swap "; " ns:swap_many
<->n "; " ns
end

and test that it behaves just as before:
test swap_many’ .get "John Smith; Jane Doe" = "Smith, John; Doe, Jane"

Grammars are fully-integrated within the Boomerang system, and as such the result-
ing lenses produced behave just as an other well-formed lenses. The swap lens can be
used as part of the definition of a subsequent lens condense that removes extraneous
personal information:

let AGE : regexp = [0-9]+
let GENDER : regexp = "™M" | "E"

let condense : lens
swap . del ", " . del AGE . del ", " . del GENDER

and verify the correct behavior with a couple of unit tests:
test condense.get "John Smith, 24, M" = "Smith, John"

test condense.put "Hancock, John" into "John Smith, 24, M"
= "John Hancock, 24, M"

16



Taking this one step further, the lens condense also can be used in a subsequent
grammar pair that takes a list of two newline-separated individuals and pairs them up:

let pair : lens =
grammar
pair ::= cl:condense newline c2:condense
<=> " (" C:I. n & " C2 ") n
end

which in turn can be used to define the lens pair_many, which operates on a list with
an even number of names and pairs them up:

let pair_many : lens =

grammar
pair_many ::= p:pair <-> p
| p:pair newline ps:pair_many
<-> p newline ps
end

and verify correct behavior:

let two_names : string =
<<

John Smith, 24, M

Jane Doe, 23, F

>>

test pair.get two_names = " (Smith, John & Doe, Jane)"
let many_names : string =

<<

John Smith, 24, M
Jane Doe, 23, F

Brad Pitt, 45, M
Angelina Jolie, 33, F
>>

test pair_many.get many_names =
<<

(Smith, John & Doe, Jane)

(Pitt, Brad & Jolie, Angelina)
>>

Finally, we can take the names from the output and easily rearrange them to present
how their names would be displayed as a married couple (assuming the last name that
appears first is used as their married name):

17



let marry : lens =

grammar
marry ::= "(" 1lnl:LAST ", " fnl:FIRST " & " LAST ", " fn2:FIRST ")"
<-> fnl " and " fn2 " " 1nl
end

and test it by composing the get function of marry and pair:
test marry.get (pair.get two_names) = "John and Jane Smith"

Notice that the last name of the second person in the pair isn’t labeled in the grammar,
since it isn’t copied over to the output.

2.4.1 Rewriting the Composers Lens with Grammars

Using right-recursive grammars, we can rewrite the basic composers lenses as follows:

let comp : lens =
grammar
comp ::= nm: (key ALPHA) ", " YEARS ", " cntry:ALPHA
<=> nm ", " cntry
end
let comps : lens =
grammar
comps ::= c:<dictionary "":comp> <-> cC
| c:<dictionary "":comp> newline cs:comps <-> c newline cs
end

and verify it with the same unit tests as earlier:

test comps.get s = v

test comps.put v into s = s

test comps.put <<

Jean Sibelius, Finnish

Aaron Copland, Yankee

>> into s = <<

Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, Yankee
>>

2.4.2 Mutually-Recursive Grammars

Boomerang also supports grammars with mutually-recursive productions, as in the fol-
lowing example:

18



let (pos,neg) : lens x lens =

grammar

pos ::= "positive" <-> "+"

| "positive " n:neg <-> "+ " n
and neg ::= "negative" <-> "-"
| "negative " p:pos <-> "- " p
end

test pos.get "positive" = "+"
test pos.get "positive negative positive negative" = "+ - + ="
test neg.create "- + -" = "negative positive negative"

The behavior of these lenses is as follows:

test pos.get "positive" = "+"
test pos.get "positive negative positive negative" = "+ - + ="
test neg.create "- + -" = "negative positive negative"

19



Chapter 3

Alignment

When updating a source, usually we want the lens to be able to match up pieces of the
updated view with the corresponding pieces of the old view, to restore the hidden in-
formation. We already saw this problem in the composers lens of the Quick Start, when
swapping the order of composers the year data is not swapped by the PUT function. We
solved this using a dictionary and a key functions defined in Core .boomn.

In this section we explain in more details how this works.

3.1 Tags

Tag is a type defined in Core.boom. It is a quadruple with a specie, a predicate, a default
key annotation and a string. The first one define which method Boomerang will use to
align the chunks. The second is a way for the programmer to forbid a match between two
chunks, and for the moment, it comes in only one flavor: a threshold. The third one is
explained in the following section. Finally, the last one is a identifier’.

The identifier is used to specify groups of chunks that are aligned independently
(Boomerang will match only chunks with the same identifier). During one alignment,
chunks with the same identifier should also agree on the tag, i.e., the specie and the pred-
icate should be the same.

Briefly, the species are

Positional Chunks are aligned positionally.
Diffy Non crossing alignment minimizing the cost.

Greedy A greedy algorithm to find an alignment with a low cost. In each step it match
the first pair of chunks with the smallest cost.

Setlike An alignment minimizing the total cost.

lthis is actually what was called “tag” in the old versions of Boomerang

20



where cost is the sum of string distances between the matched keys (plus the cost of
nested alignment, if any). We will see them in more details as we show some examples.

A threshold x forbid any match between chunks that does not conserve at least % of
the key. For example, a threshold of 0 allows all alignments and a threshold of 100 allows
only chunks with exactly the same key to be matched.

3.2 Keys

Key annotations are used to indicate which part of the chunk is relevant and should be
used for the alignment. The parts of the chunk annotated with key are used for the align-
ment and the parts annotated with nokey are not used. These annotations can be placed
using the functions key and nokey, and these functions does not override previous def-
initions (a key inside a nokey will be used for the alignhment). We give two more func-
tions, force_key and force_nokey to override previous definitions.

When we have nested chunks, the keys in a nested chunk are not used for the align-
ment of an enclosing chunk. The functions to set key annotations does not go inside other
chunks.

If a part of a chunk does not have a key annotation, it will use the default value given
by the chunk (defined with the tag).

3.3 Learning with examples

We will use the same composers example from the Quick Start:

let ALPHA : regexp = [A-Za-z ]+
let YEARS : regexp = [0-9]{4} . "-" . [0-9]{4}
let comp : lens =

key ALPHA . ", "

. del YEARS . del ", "
. nokey ALPHA

let create_comps (chunk:lens) : lens = "" | chunk . (newline . chunk) *

3.3.1 Dictionary

Dictionary lenses can be written using the greedy alignment (see next section), for this,
we only need to use the function dictionary that generates a Tag. Using dictionary,
Boomerang only matches two chunks when the key is exactly the same.

let comps : lens = create_comps <dictionary "":comp>

21



test comps.put
<<
Benjamin Briten, English
Benjamin Britten, Yankee
Aron Copland, American
>>
into
<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English
>>

<<
Benjamin Briten, 0000-0000, English
Benjamin Britten, 1913-1976, Yankee
Aron Copland, 0000-0000, American
>>

If more then one chunk has the same key, the dictionary will match then consecutively
in the same order as they are in the view and in the source. For example:

test comps.put
<<
Repeated Key, English
Repeated Key, American
Repeated Key, Finnish
>>
into
<<
Repeated Key, 1111-1111, Finnish
Repeated Key, 2222-2222, American
Benjamin Britten, 1913-1976, English
>>

<<
Repeated Key, 1111-1111, English
Repeated Key, 2222-2222, American
Repeated Key, 0000-0000, Finnish
>>

It starts matching the first entry in the view (Repeated Key, English) with the
tirst entry in the source with the same key (Repeated Key, 1111-1111, Finnish),
and go on®. For the last entry in the view, there is no more unmatched key Repeated Key
in the source, so a create is used.

2the real algorithm (greedy alignment) is different, but has the same result

22



3.3.2 Greedy

The greedy constructs the alignment iteratively, adding at each step the first put with the
smallest cost, i.e., choosing at each step the best pair.

let comps : lens = create_comps <greedy 0 "":comp>

test comps.put
<<
Benjamin Briten, English
Benjamin Brtten, Yankee
Aron Copland, American
>>
into
<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English
>>

<<
Benjamin Briten, 1913-1976, English
Benjamin Brtten, 1865-1957, Yankee
Aron Copland, 1910-1990, American
>>

in this example, the string distance between the first two key in the updated view
and the old key of Benjamin Britten are the same, so the algorithm chose the first one for
the put. At the end, even if Benjamin Brtten and Jean Sibelius are very different, it will
chose this pair for a put (because they are the only remaining chunks). The function of
the threshold is to forbidden this kind of behavior.

test comps.put
<<
Benjamin, English
>>
into
<<
Benjamin Britten, 1913-1976, English
Benjamin Cooke, 1734-1793, English
>>

<<
Benjamin, 1734-1793, English
>>

23



However, introducing thresholds we have:
let comps : lens = create_comps <greedy 50 "":comp>

test comps.put
<<
Ben, English
Sibelius, Finnish
>>
into
<<
Benjamin Britten, 1913-1976, English
Benjamin Cooke, 1734-1793, English
Jean Sibelius, 1865-1957, Finnish
>>

<<
Ben, 0000-0000, English
Sibelius, 1865-1957, Finnish
>>

3.3.3 Setlike

The greedy tries to minimize the alignment in a very naive way. On the other hand, the
setlike really minimizes the total cost of the alignment. However the algorithm is more
complex and slower. Even if it is deterministic, it is not predictable which will be the
answer when more then one answer is correct.

let comps : lens = create_comps <setlike 50 "":comp>

test comps.put
<<
Benjamin Briten, English
Benjamin Brtten, Yankee
Aron Copland, American
>>
into
<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English
>>

<<
Benjamin Briten, 0000-0000, English

24



Benjamin Brtten, 1913-1976, Yankee
Aron Copland, 1910-1990, American
>>

in the previous example, another answer were possible:

<<
Benjamin Briten, 1913-1967, English
Benjamin Brtten, 0000-0000, Yankee
Aron Copland, 1910-1990, American
>>

Let’s see the difference between greedy and setlike with an example:

let comps : lens = create_comps <greedy 0 "":comp>

test comps.put
<<
abd, first
acdefg, second
>>
into
<<
xyzabd, 1111-1111, something
acd, 2222-2222, something
>>

<<
abd, 2222-2222, first

acdefg, 1111-1111, second
>>

while the setlike really minimizes the alignment:

let comps : lens = create_comps <setlike 0 "":comp>

test comps.put
<<
abd, first
acdefg, second
>>
into
<<
xyzabd, 1111-1111, something
acd, 2222-2222, something
>>

25



<<
abd, 1111-1111, first
acdefqg, 2222-2222, second
>>

3.3.4 Positional

The positional just align the chunks sequentially. It is almost the same as does not have
chunks, but it allows some advanced techniques that are not possible without chunks.
For example, it is possible to pass an information across an union:

let notacross_union =
"L" . del [a—-z]l* | "R" . copy [a—-z]x*
test notacross_union.put "L" into "Rfromr" = "L"

let across_union =

"L" . <positional "":del [a-z]x> | "R" . <positional "":copy [a-z]x>
test across_union.put "L" into "Rfromr" = "Lfromr"

26



Chapter 4

The Boomerang Language

The Boomerang language provides convenient concrete syntax for writing lenses (and
strings, regular expressions, canonizers, etc.). The concrete syntax is based on an explicitly-
typed core fragment of OCaml. It includes user-defined datatypes and functions, mod-
ules, unit tests, and special syntax for constructing regular expressions and for accessing
the components of lenses.

4.1 Lexing

Space, newline and tab characters are whitespace. Comments are equivalent to whites-
pace and are delimited by (+ and *) ; comments may be nested.

4.1.1 String Literals

String literals can be any sequence of characters and escape sequences enclosed in double-
quotes. The escape sequences \", \\, \b, \n, \r, and \t stand for the characters double-
quote, backslash, backspace, newline, vertical tab, and tab. To facilitate lining up columns
in indented string literals, within a string, a newline followed by whitespace and then |
is equivalent to a single newline. For example,

"University
|of
|Pennsylvania"

is equivalent to both

"University
of
Pennsylvania"

(in the leftmost column) and

27



"University\nof\nPennsylvania"

(anywhere). String literals can also be specified using “here document” (heredoc) nota-
tion, delimited by << and >>. If the initial << is followed by a newline and sequence
of space characters, that indentation is used for the rest of the block. For example, the
following string

<<
University
of
Pennsylvania
>>

is equivalent to the previous ones.

4.1.2 Identifiers

Ordinary identifiers are non-empty strings drawn from the following set of characters

abcdefghijklmnopgrstuvwz:xyz
ABCDEFGHIJKLMNOPOQRSTUVWIXY Z
0123456728379

! -@

The first symbol of an identifier must be a non-numeric character. The following key-
words

module open let in fun
begin end test match with
type error char string regexp
lens int bool canonizer unit
of into where forall 1t
leg gt geq true false
cex grammar and
.get .put .Create .canonize .choose
.stype .astype .domain_type .vtype .avtype
.codomain_type .bij aregexp skeleton_set resource_set
and symbols
() & * - o+ 1> = <=> <-> =
{ r # [ 1 > , T/ 2 \

are reserved.

Some of the parsing rules distinguish several different kinds of identifiers. The lexer
produces different tokes for uppercase (Uldent) and lowercase (LIdent) identifiers. Addi-
tionally, the lexer produces special tokens for qualified identifiers (Qualldent), which have
the form M. N. %, and type variable identifiers (TyVarldent), which have the form 'a.

28



4.1.3 Regular Expressions

~

Character classes are specified within [ and ] using POSIX notation. The ~ character
indicates a negated character class. For example, [A-Z] is the set of upper case characters,
[0-9] the set of decimal digits, [ "] the full set of ASCII characters, and [“\n\t ] the
set of non-newline, non-tab, non-space characters.

4.2 Parsing

This section gives a formal definition of Boomerang syntax as an EBNF grammar. The
productions for each syntactic category are followed by a brief explanation. In grammar
rules we adopt the following conventions:

e Literals are written in a typewriter font and enclosed in quotes: e.g., ‘module’;

e Non-terminals and tokens are enclosed in angle brackets: e.g., (Exp);

Optional elements are enclosed in square brackets: e.g., [*:” (Sort)];

Terms are grouped using parentheses;

Optional and repeated terms are specified using ? (optional), * (0 or more), and + (1
or more).

4.2.1 Modules and Declarations
(CompilationUnit) ::= ‘module’ (Uldent) ‘=" ("open’ (Qid))* (Decl)*

(Decl) ::= ‘module’ (LIdent) ‘=" (Decl)* ‘end’
| ‘type’ (TyVarList) (Lldent) ‘=" (DTSortList)
| ‘let’ (Id) ((Param))+ [":" (Sort)] ‘=" (Exp)
| ‘let’ (LetPat) ((Param))+ [':" (Sort)] =" (Exp)
| ‘test’ (InfixExp) ‘=" (TestResExp)
| ‘test’ (InfixExp) “:" (TestResSort)

A Boomerang compilation unit contains a single module declaration, such asmodule Foo,
which must appear in a file named foo.src (for “literate” sources) or foo.boom (for
plain sources). Boomerang modules are only used to group declarations into a common
namespace (in particular, Boomerang does not support module signatures or sealing). A
module consists of a sequence of open declarations, which import all the declarations
from another module into the namespace, followed by a sequence of declarations. A
declaration is either a nested module, a type, a 1let, or a unit test.

29



Unit Tests

Boomerang supports inline unit tests, which are executed when the system is run in test-
ing mode (see Section 6.1).

(TestResExp) ::= ‘2’
| ‘error’

| (AppExp)

(TestRestSort) == ‘2’
| (Sort)

Unit tests have one of the following forms:

test (copy [A-Z]x).get "ABC" = "ABC"

test (copy [A-Z]%).get "ABC" = ?

test (copy [A-Z]x).get "123" = error

test (copy [A-Z]%).get "ABC" : string
test (copy [A-Z]x).get "ABC" : ?

The first form, test e; = ey, checks that e; and e, evaluate to identical values. The two
expressions must have compatible sorts with a defined equality operation. We often use
this kind of test to print and check the behavior of the get, put, and create components of
lenses. A unit test of the form test e = ? evaluates e and prints the result. The third
form of unit test, test e = error, checks that an exception is raised during evaluation
of e. This kind of test is used to check that a lens correctly checks the side conditions on
its inputs. Notice that only evaluation errors are tested. Finally, unit tests of the form
test e: sand test e : ? test the sort of e rather than its value.

4.2.2 Expressions

(Exp) ::= ‘let’ (Id) ((Param))+ [":” (Sort)] ‘=" (Exp) “in’ (Exp)
| ‘let’ (LetPat) [":’" (Sort)] ‘=" (Exp) ‘in’ (Exp)
| (FunExp)

(FunExp) ::= ‘fun’ ((Param))+ [":’ (Sort)] ‘=>" (Exp)
| (CExp) ['$’ (FunExp)] (CaseExp) ::= ‘match’ (ComposeExp) ‘with’ (BranchList) [":’
(Sort)]
| (ComposeExp)

(ComposeExp) ::= (ComposeExp) *;’ (CommaExp)
| (CommaExp)

(CommaExp) = (CommaExp) ‘,” (BarExp)
| (BarExp)

30



(BarExp) ::= (OBarExp)
| (DBarExp)
| (EqualExp)

(OBarExp) ::= (OBarExp) ‘|" (EqualExp)
| (EqualExp) ‘|’ (EqualExp)

(DBarExp) = (DBarExp) ‘||" (EqualExp)
| (EqualExp) ‘|| (EqualExp)

(EqualExp) ::= (AppExp) ‘=" (AppExp)
| (InfixExp)

(InfixExp) := (DotExp)
| (TildeExp)

| (AmpExp)

| (AmpAmpExp)

| (RewriteExp)

| (LensComponentExp)

| [(InfixExp)] =" (AppExp)
| (AppExp) “1t’ (AppExp)
| (AppExp) “leq’ (AppExp)
| (AppExp
|«
|«

)
) ‘gt (AppExp)
AppExp; ‘

geq’ (AppExp)

(DotExp) ::= (DotExp) *.” (AppExp)
| (AppExp)*." (AppExp)

(TildeExp) := (TildeExp) '~ (AppExp)
| (AppExp) "’ (AppExp)

(AmpExp) == (AmpExp) ‘s’ (AppExp)
| (AppExp) ‘s’ (AppExp)

(AmpAmpExp) = (AppExp) ‘s’ (AmpAmpExp)
| (AppExp) ‘s’ (AppExp)

(RewriteExp) == (AppExp) ‘\1tsym-\btsym’ (AppExp)
| (AppExp) ‘\1tsym=\btsym’ (AppExp)

(LensComponentExp) ::= (AppExp) *.get’ (AppExp)

| (AppExp) ' .put’ (AppExp) ‘into’ (AppExp)
| (AppExp) “.create’ (AppExp)

31



| (AppExp) '.canonize’ (AppExp)
| (AppExp) *.choose’ (AppExp)

(AppExp) = (AppExp) (RepExp)
| (RepExp)

(RepExp) ::= (TyExp) (Rep)
| (TyExp)

(TyExp) == (TyExp) ‘{’ (Sort) '}’
| (AExp)

(Qid)

(MatchExp)

“#”“{’ (SortList) "} (List)
(Character)

(Integer)

(Boolean)

(CharSet)

(NegCharSet)

(String)

(RegExpString)

ny

‘grammar’ (Productions) ‘end’
(AExp) ‘. stype’

( ‘. vtype’

( ‘.astype’

( ‘.avtype’

( ‘.domain_type’
(AExp) ’.codomain_type’
(AExp) “.bij’

(MatchExp) = <(Exp) >
| <(AppExp) *:" (Exp) >

Branches

(Branch) == (Pat) ‘>’ (EqualExp)

(BranchList) ::= [*|'] (Branch) (’|" (Branch))*



Repetitions
(Rep) == “»’
| l+/
| I?I
| “{’ (Integer) "}’
| “{’ (Integer) *,” (Integer) “}’
Lists
(Listy == "[1’
| 1" (CommaExp) (*; (CommaExp))* ‘1’

Grammars

(Atom) = (AExp)
| (Lldent) *:’" (Qid)

(Atoms) == (Atom)+
(Aexps) == (Aexp)+

(Rule) == (Atoms) <->(Aexp)

(Rules) = [''] (Rule) (" (Rule))*
(Production) = (LIdent)’: : =" (Rules)

(Productions) ::= (Production) ("and’ (Production))*

4.2.3 Identifiers
(Id) == (LIdent)
| (Uldent)

(QId) == (LIdent)
| (Uldent)
| (Qualldent)

(QVar) ::= (LIdent)
| (Qualldent)

33



4.2.4 Parameters

(Param> n=
| (¢ (Ll
| ‘(¢ (Lld
| ‘(¢ (Lld
| ¢ (Ll
| (¢ (LI
| (¢ (Ll
I

| {

| {

;

—

‘(" (LId
‘(" (LId
(

“("(Id) “:" (Sort) “)’
ent) “:’ (Sort) ‘where
ent)‘: lens in 2 <->" (AppExp

Il)l

’

)
ent) “: lens in ? <=>" (AppExp)”)

)

)

ent) “: lens in’ (AppExp) ‘<=>?
ent)‘: lens in’ (AppExp)

ent)‘: lens in’ (AppExp)
ent)‘: string in’ (Exp)’)

’

’

)
;
ent)“: lens in’ (AppExp) ‘<->?
)
)
)

>
>

<-
<=
7

“(" (TyVarldent) *)’
(TyVarldent)
()

4.2.5 Sorts

(Sort) = "forall’ (TyVarldent) ‘=>" (Sort)
| (ArrowSort)

(ArrowSort) =

| ¢ (LId

(ProductSort) ‘=>" (ArrowSort)
ent) “:” (ProductSort) '—>

| (ProductSort)

’ 4
/ 7
4

4

AppExp) )
AppExp) )

" (ArrowSort) )’

(ProductSort) ::= (ProductSort) '—>" (DataTypeSort)
| (DataTypeSort)

(DataTypeSort) (BSort) [(QVar)]

| " (" (Sor

(BSort) ::=
| <Sor
| (" (LId
| “(lens
| “(lens
| “(lens
|
|
|
|
|

/

s

“(lens
lens
lens

/

/

stri

(ASort)

(ASort) =
|

‘char’

t) “,” (SortList) “) " (QVar)

(" (Sort) ")’
t) ‘where’ (Exp) “)’
ent) “:’" (Sort) ‘where’”)’
in ? <—>" (AppExp)
in 2 <=>" (AppExp) ‘)’
)
)

’ 4

in” (AppExp) ‘<->72)’

in” (AppExp) ‘<=>2)"’
in’ (AppExp) ‘<=>" (AppExp) *)
in’ (AppExp) ‘f >" (AppExp) )

ng in’ (Exp)’)

(QVar)

34

1

1



| ‘string’

| ‘regexp’

| ‘aregexp’

| ‘skeleton_set’
| ‘resource_set’
| ‘lens’

| ‘int’

| ‘bool’

| ‘canonizer’

| ‘unit’

|

(TyVar)
(TyVar) == (TyVarldent)

(TyVarList) == (TyVar)
| (" (TyVar) (*,” (TyVar))**)’

(DTSort) ::= (Uldent)
| (Uldent) ‘of’ (Sort)

(DTSortList) ::= (DTSort) (*|" (DTSort))*

4.2.6 Patterns

(Pat) == (Pat)’,” (ListPat)
| (Pat)*,” (ConPat)
| (ListPat)
| (ConPat)

(LetPat) *,” (ConPat)
(Qualldent) (APat)

(LetPat) = (LetPat) “,” (ListPat)

|

|
| (APat)

(ConPat) := (Uldent) (APat)
| (Qualldent) (APat)
| (APat)

(APat) == "_"’
| (Lldent)
ON

| (Integer)

| (Boolean)

| ‘cex’ (Pat)

35



(String)

(Uldent)

(Qualident)

“(" (Pat) ")’ (ListPat) =="[1’
(ConPat) “: " "\_’

(ConPat) *: :” (Lldent)
(ConPat) *: :” (ListPat)

4.3 Coercions

Some coercions are automatically inserted by the type checker on programs that use sub-
typing. These coercions are

e string to regexp (can be made manually using str)
e regexp to aregexp (can be made manually using rx1ift)

e regexp to lens (can be made manually using copy)

4.4 Operators

To make it simple to write lenses and understand them, Boomerang has some operators
that desugars into functions defined in Boomerang libraries.

In the table 4.2, the notation [type] should be replaced by the type of expr, for
example, [a-z]? desugars to regexp_iter [a-z] 0 1.

36



operator applied to resolves to
= anything (polymorphic) equals{type}
gt int bgt
1t int blt
geq int bgeq
leg int bleg
&& bool land
| | bool lor
|| lens union
| regexp union
| lens disjoint_union
& regexp inter
- regexp diff
- int minus
string string_concat
regexp regexp_concat
aregexp aregexp_concat
lens lens_concat
. canonizer canonizer_concat
- lens lens_swap
<> lens set
<=> lens rewrite
Table 4.1: Infix operators
operator applied to resolves to
expr+ regexp, aregexp, canonizer [type]l_iter expr (-1)
expr+ lens lens_plus
exprx regexp, aregexp, canonizer [typel_iter expr (=1)
expr* lens lens_star
expr? regexp, aregexp, canonizer [type]_iter expr 1
expr? lens lens_option
expr{n,m} regexp,aregexp,lens,canonizer [type]_iter expr m
expr{n, } regexp, aregexp, lens, canonizer [type]_iter expr (—1)

Table 4.2: Postfix operators

37



notation resolves to
lens.bi]j bij
lens.get get
lens.put put
lens.create create
lens.stype Stype
lens.domain_type stype
lens.astype astype
lens.vtype vtype
lens.codomain_type vtype
lens.avtype avtype

Table 4.3: Lens record-style projection notation

notation desugars to

<aregexp> aregexp_match (greedy 0 "")
<lens> lens_match (greedy 0 "")
<tag:aregexp> aregexp_match

<tag:lens> lens_match

lens in S <-> V 1in_lens_type

lens

in S <=>

V in_bij_lens_type

Table 4.4: Other notations

38



Chapter 5

The Boomerang Libraries

The Boomerang system includes an assortment of useful primitive lenses, regular ex-
pressions, canonizers, as well as derived forms. All these are described in this chapter,
grouped by module.

In most cases, the easiest way to understand what a lens does is to see it in action on
examples; most lens descriptions therefore include several unit tests, using the notation
explained in Section 4.2.1.

More thorough descriptions of most of the primitive lenses can be found in our tech-
nical papers Bohannon et al. [2008], Foster et al. [2008]. The long versions of those papers
include proofs that all of our primititives are “well behaved,”. However, for getting up to
speed with Boomerang programming, the shorter (conference) versions should suffice.

5.1 The Core Definitions

The first module, Core, imports primitive values (defined in the host language, OCaml)
to Boomerang. In Core, we do not use any overloaded or infix operators (e.g., ., |,
~, =, ) because the Boomerang type checker resolves these symbols to applications of
functions defined in Core. (We do this because it facilitates checking the preconditions
on primitive values using dependent refinement types.)

Values defined in Core are available by default in every Boomerang program.

5.1.1 Equality

The polymorphic equals operator is partial: comparing function, lens, or
canonizer values raises a run-time exception. The infix = operator desugars into equals,
instantiated with appropriate type arguments.

let equals : forall 'a => '"a -> "a —-> bool

test equals{string} "ABC" "ABC" = true

39



test equals{string} "ABC" "123" = false
test equals{char} "A’ "\065" = true
test equals{string —-> string}
(fun (x:string) -> x) (fun (y:string) -> y) = error

5.1.2 Booleans

‘ land, lor, not, implies| These operators are the standard functions onbooleans.
The infix operators && and | | resolve to 1and and lor respectively.

let land : bool -> bool -> bool
let lor : bool -> bool -> bool

let not : bool -> bool

let implies : bool -> bool —-> bool

5.1.3 Integers

‘ string of_ int ‘ The operator string_of_int convertsan integer to the Correspond-
ing (decimal) string.

let string_of_int : int -> string

\ bgt, blt, bgeq, bleq ‘ These operators are the standard comparisons on integers.
Infix operators gt, 1t, geq, leq resolve to these operators. In this module, we use names
like bgt here because gt is a reserved keyword.

let bgt : int -> int -> bool
let blt : int -> int -> bool
let bgeg : int -> int -> bool
let bleg : int -> int -> bool

plus, minus, times, div, mod| These operators are the standard arithmetic func-
tions on integers.

let plus : int -> int -> int
let minus : int -> int -> int
let times : int —-> int -> int
let div : int —-> int —-> int
let mod : int -> int -> int
5.1.4 Characters
The code function converts a char to its ASCII code.

let code : char -> int

40



chr| The chr function converts an integer in the range 0 to 255 to the corresponding
char.

let chr : (n:int where land (bleg 0 n) (bgeg 255 n)) —-> char

string_of_char| The string_of_char function converts a character to a string.

let string_of_char : char -> string

5.1.5 Strings
The length function computes the length of a string.

let length : string -> int

test length "" =0
test length "Boomerang" = 9
The get_char function gets a character from a string.

let get_char : (s:string —->
(n:int where land (bleg 0 n) (bgt (length s) n)) ->
char)

test get_char "Boomerang" 0 = ’'B’

test get_char "Boomerang" 1 "o’

test get_char "Boomerang" 2 "o’

test get_char "Boomerang" 3 "m’

test get_char "Boomerang" 8 = 'g’

test get_char "Boomerang" 9 = error

string_concat \ The string_concat operator is the standard string concatenation
tunction. The overloaded infix . operator resolves to st ring_concat whenitis applied
to strings.

let string_concat : string -> string -> string
test string_concat "" "" = "0

test string_concat "Boom" "erang" = "Boomerang"
test string_concat "" "Boomerang" = "Boomerang"

41



5.1.6 Regular Expressions

The st r function converts a st ring to the singleton regexp containing it. This
coercion is automatically inserted by the type checker on programs that use subtyping.
However, it is occasionally useful to explicitly promote strings to regexps, so we include
it here.

let str : string —-> regexp

The regular expression empty denotes the empty set of strings.

let EMPTY : regexp = []

The regular expression epsilon denotes the singleton set containing the
empty string.

let EPSILON : regexp = (str "")

string_of_regexp \ The string_of_regexp function represents a regular expres-
sion as a string.

let string_of_regexp : regexp —-> string

regexp_union ‘ The regexp_union operator forms the union of two regular expres-
sions. The overloaded infix symbol | desugars into regexp_union when used with
values of type regexp.

let regexp_union : regexp —> regexp —> regexp

\ regexp_concat \ The regexp_concat operator forms the concatenation of two reg-
ular expressions. The overloaded infix symbol . desugars into regexp_concat when
used with values of type regexp.

let regexp_concat : regexp —> regexp —> regexp

regexp_iter‘ The regexp_iter operator iterates a regular expression. The over-
loaded symbols *, +, and ?, as well as iterations {n, m} and {n, } alldesugarinto regexp_iter
when used with values of type regexp. If the second argument is negative, then the iter-

ation is unbounded. For example, R+ desugars into regexp_iter R 0 (-1).
let regexp_iter : regexp —> int -> int -> regexp
let regexp_star (r : regexp) : regexp =

regexp_iter r 0 (minus 0 1)

42



let regexp_plus (r : regexp) : regexp =
regexp_iter r 1 (minus 0 1)

let regexp_option (r : regexp) : regexp =
regexp_iter r 0 1

The inter operator forms the intersection of two regular expressions. The
infix symbol & desugars into inter.

let inter : regexp —-> regexp —> regexp

The diff operator forms the difference of two regular expressions. The infix
symbol - desugars into diff.

let diff : regexp —-> regexp —-> regexp

representative \ The function representative computes a (typically shortest)
representative of a regular expression.

let representative : regexp —-> string

If the regular expression denotes the empty language, an exception is raised, as the
unit test below illustrates.

test representative (regexp_iter [A-Z] 1 3) = "A"
test representative [] = error

The is_empty function tests if a regular expression denotes the empty

language.

let is_empty : regexp —-> bool

test is_empty [] = true
test is_empty [A-Z] = false
test is_empty (diff [A-Z] ["]) = true

equiv, equiv_cex| The equiv function tests if two regular expressions denote the
same language.

let equiv : regexp —-> regexp —-> bool
let equiv_cex : regexp —> regexp —> bool

test equiv [A-Z] [\065-\090] = true

43



\mat ches,matche s_cex\ The matches function tests if a string belongs to the lan-
guage denoted by a regular expression.

let matches : regexp —-> string -> bool

let matches_cex : regexp —> string -> bool
test matches [A-Z] "A" = true

test matches [A-Z] "O" = false

test matches (diff ["] [A-Z]) "X" = false
test matches (diff ["] [A-Z]) "O" = true

disjoint,disjoint_cex| The disjoint function tests whether two regular ex-
pressions denote disjoint languages.

let disjoint : regexp -> regexp —-> bool
let disjoint_cex : regexp —-> regexp —> bool

test disjoint [A-Z] [0-9] = true
test disjoint [A-Z] [M] = false

splittable, splittable_cex| The splittable function tests whether the con-
catenation of two regular expressions is ambiguous.

let splittable : regexp —-> regexp —-> bool

let splittable_cex : regexp —> regexp —-> bool

test splittable (regexp_iter [A] 0 1) (regexp_iter [A] 0 1) false
11 01

test splittable (regexp_iter [A] ) (regexp_iter [A] )

true

iterable, iterable_cex| The iterable function tests whether the iteration of a
regular expression is ambiguous.

let iterable : regexp —-> bool
let iterable_cex : regexp -> bool

1) false
1) = true

test iterable (regexp_iter [A] O
test iterable (regexp_iter [A] 1

44



The count function takes as arguments a regular expression R and a string w.
It returns the maximum number of times that w can be split into substrings, such that each
substring belongs to R.

let count : (r:regexp —>
(s:string where matches (regexp_star r) s) —->
int)

test count [A-Z2] "" =0

test count [A-Z] "ABC" = 3

test count (regexp_option [A-Z]) "ABC" = 3

test count (regexp_option [A-Z]) "123" = error

5.1.7 Tags

‘ species,predicate, key, tag ‘ A tag is a type defined by the Core module and
used by the match functions (aregexp_matchand lens_match). Thekey_annotation
is used to set the default annotation for the chunk: with Key everything without annota-
tions are key, while with NoKey they are not.

type species = Positional | Diffy of bool | Greedy | Setlike

type predicate = Threshold of (t:int where land (bgeg t 0) (bleg t 100))
type key_annotation = Key | NoKey

type tag = Tag of species x predicate * key_annotation x string

let diffy (name:string) : tag

= Tag (Diffy true, Threshold 0, Key, name)
let positional (name:string) : tag

= Tag (Positional, Threshold 0, NoKey, name)
let greedy (t:int where land (bgeq t 0) (bleg t 100)) (name:string) : tag
= Tag (Greedy, Threshold t, NoKey, name)
let dictionary (name:string) : tag

= Tag (Greedy, Threshold 100, NoKey, name)

let setlike (t:int where land (bgeqg t 0) (bleg t 100)) (name:string) : tag

= Tag (Setlike, Threshold t, NoKey, name)

5.1.8 Annotated Regular Expressions

The rx1ift function converts a regexp to an equivalent annotated regular
expression. This coercion is automatically inserted by the type checker on programs that
use subtyping.

let rxlift : regexp —-> aregexp

45



The rxdrop function drops the annotation of an annotated regular expres-
sions.

let rxdrop : aregexp —-> regexp

test equiv (rxdrop (rxlift [a-z])) [a-z] = true

aequiv, aequiv_cex\ The aequiv function tests if two annotated regular expres-
sions denote the same chunk structured language. It's conservative.

let aequiv : aregexp —> aregexp —> bool
let aequiv_cex : aregexp —> aregexp —> bool

let aregexp_match_compatible_cex : tag —-> aregexp —> bool
let aregexp_compatible_cex : aregexp —-> aregexp —> bool

|aregexp_concat| The aregexp_concat operator forms the concatenation of two
annotated regular expressions. The overloaded infix symbol . desugarsinto aregexp_concat
when used with values of type aregexp.

let aregexp_concat (al:aregexp)
(a2:aregexp where aregexp_compatible_cex al aZ2)
aregexp

regexp_union ‘ The regexp_union operator forms the union of two regular expres-
sions. The overloaded infix symbol | desugars into regexp_union when used with
values of type regexp.

let aregexp_union (al:aregexp)
(a2:aregexp where land (disjoint_cex (rxdrop al) (rxdrop aZ2))
(aregexp_compatible_cex al a2))
aregexp

‘aregexp_iter‘ The aregexp_iter operator iterates an annotated regular expres-
sion. The overloaded symbols *, +, and 2, as well as iterations {n,m} and {n,} all
desugar into aregexp_iter when used with values of type aregexp. If the second
argument is negative, then the iteration is unbounded. For example, R+ desugars into
aregexp_iter R 0 (-1).

let aregexp_iter : aregexp —-> int -> int -> aregexp

let aregexp_star (r : aregexp) : aregexp =
aregexp_iter r 0 (minus 0 1)

let aregexp_plus (r : aregexp) : aregexp
aregexp_iter r 1 (minus 0 1)

let aregexp_option (r : aregexp) : aregexp =
aregexp_iter r 0 1

46



’ aregexp_match ‘ The aregexp_match function add a chunk annotation with tag de-
tined by the string to the annotated regular expression. The operator <aregexp> and
<tag:aregexp>(kﬁugmsinﬁ)aregexp_match

let aregexp_match (t:tag) (a:aregexp where aregexp_match_compatible_cex t a)
aregexp

The no_chunks function tests if an annotated regular expressions con-
tains chunk annotations.

let no_chunks : aregexp —-> bool
test no_chunks (rxlift [a-z]) = true
test no_chunks (aregexp_match (positional "") (rxlift [a-z])) = false

5.1.9 Equivalence Relations

rel| The rel datatype splits the equivalence relations on lens (concreate /abstract) do-
mains into two types: identity equivalences, and unknown equivalences.

type rel = Identity | Unknown

let rel is id (r:rel) : bool =
equals{rel} r Identity

5.1.10 Lens Components

The stype function extracts the dropped concrete type component (i.e., the
type of the domain of its get function) of a lens. The record-style projection notation
1.stype and 1.domain_type both desugar into stype.

let stype : lens —> regexp

The astype function extracts the concrete type component of a lens. The
record-style projection notation 1.astype desugars into astype.

let astype : lens —> aregexp

The vtype function extracts the dropped abstract type component (i.e., the
type of the codomain of its get function) of a lens. The record-style projection notation
1.vtype and 1.codomain_type both desugar into vtype.

let vtype : lens —-> regexp

47



The avtype function extracts the abstract type component of a lens. The
record-style projection notation 1. avtype desugars into avtype.

let avtype : lens —> aregexp

The ktype function extracts the complement type component.

let ktype : lens —> skeleton_set

The mt ype function extracts the resource type component.

let mtype : lens —-> resource_set

‘mtype_compatible_cex The mtype_compatible_cex function returns true if
the two types can be used for union or concat.

let mtype_compatible_cex : resource_set —> resource_set —-> bool

mtype_match_compatible_cex‘ The mtype_match_compatible_cex function re-
turns t rue if the tag t with the ktype k can be used with the mtype m for match.

let mtype_match_compatible_cex : tag —-> skeleton_set —-> resource_set -> bool

‘mtype_domain_equal‘ The mt ype_domain_equal function returns t rue if the two
types have the same domain. It’s used for compose.

let mtype_domain_equal : resource_set —-> resource_set —-> bool

vrep, srep

let vrep : lens -> string -> string
let srep : lens -> string -> string

The sequiv function extracts the equivalence relation on the concrete domain
(astype) of a lens.

let sequiv : lens —-> rel

The vequiv function extracts the equivalence relation on the abstract domain
(avtype) of a lens.

let vequiv : lens —-> rel

48



The bij function tests whether a lens is bijective. The record-style projection
notation 1.bij desugars into bi J.

let bij : lens —-> bool

The is_basic function tests whether a lens is a basic lens (i.e. does not
contain any chunk).

let is basic (l:lens) : bool =
no_chunks (avtype 1)

in_lens_type| Thein_lens_type function tests whether alensisina given stype
and vtype. The lens in S <-> Vnotation desugars into in_lens_type.

let in_lens_type (l:lens) (s:regexp) (v:regexp) : bool =
(land (equiv_cex (stype 1) s) (equiv_cex (vtype 1) v))

in_bij_lens_type ‘ The in_lens_type function tests whether a lens is bijective in
agiven stype and vtype. The lens in S <=> Vnotationdesugarsintoin_bij_lens_type.

let in_bij_lens_type (l:lens) (S:regexp) (V:regexp) : bool =
(land (land (equiv_cex (stype 1) S) (equiv_cex (vtype 1) V)) (bij 1))

get | The get function extracts the get component of a lens. The record-style projection
notation 1.get desugars into get.

let get : (l:lens —>
(s:string where matches_cex (stype 1) s) —->
string)

put | The put function extracts the put component of a lens. The record-style projection
notation 1.put v into s desugars into put.

let put : (l:lens —>
(v:istring where matches_cex (vtype 1) v) —>
(s:string where matches_cex (stype 1) s) —>
string)

The create function extracts the create component of a lens. The record-style
projection notation 1. create desugars into create.

let create : (l:lens —>
(v:string where matches_cex (vtype 1) v) ->
string)

49



5.1.11 Lenses

The copy lens takes a regular expression R as an argument and copies strings

belonging to R in both directions.

let copy (R:regexp) (l:1lens where in_bij_lens_type 1 R R)
test get (copy [A-Z]) "A" = "A"

test put (copy [A-Z]) "B" "A" = "B"

test create (copy [A-Z]) "z" = "z"

test get (copy [A-Z]) "1" = error

test stype (copy [A-Z]) = [A-Z]

test vtype (copy [A-Z]) = stype (copy [A-Z])

The clobber lens takes as arguments a regular expression R, a string u, and
a function from strings to strings f. Its get function is the constant function that returns
u, its put function restores its concrete argument, and its create function returns the string

f u.

let clobber
(R:regexp) (u:
(l:1lens where

string)
in_lens_type 1 R

test get (clobber [A-Z] "" (fun (s
test put (clobber [A-Z] "" (fun (s
test create (clobber [A-Z] "" (fun

(f:string —>

(s:string where matches R s))
(str u))

:string) -> "B")) "A" = ""
:String) S "B")) nwowmamw — wamn
(S:String) —> "B")) nn IIB"

The const lens behaves like clobber but has a create function that always

returns a default string v.

let const (R:regexp) (v

(l:1lens where in_lens_type 1 R

(u:string)

teSt get (CODSt [A_Z] "X" "B") "A"
teSt put (COHSt [A_Z] "X" lIB") "X"
test create (const [A-Z] "x" "B")

ny,n
X

:string where matches R v)
(str u))

"X"
"A"

IIA"
"B"

The set derived lens is like const but uses an arbitrary representative of R as the
default string. The infix operator <-> desugars to set.

let set (R:regexp) (s:string) (1

const R s (representative R)

50

:lens where in_lens_type 1 R (str s))



The rewrite derived lens is like set but only rewrites strings, and so is
bijective. The infix operator <=> desugars to rewrite.

let rewrite (sl:string) (s2:string)
(l:1lens where in_bij_lens_type 1 (str sl) (str s2))
= const (str sl) s2 sl

lens_union \ The 1lens_union operator forms the union of two lenses. The concrete
types of the two lenses must be disjoint. The overloaded infix operator | | desugars into
lens_union when applied to lens values.

let lens_union
(11l:1lens where land (rel_is_id (vequiv 11))
(is_basic 11))
(12:1ens where land (
(

(land

rel_is_id (vequiv 12))
is_basic 12)

(disjoint_cex (stype 11) (stype 12))))
(1l:1ens where in_lens_type 1
(regexp_union (stype 11) (stype 12))
(regexp_union (vtype 11) (vtype 12)))

test get (lens_union (copy [A-Z]) (copy [0-9])) "A"™ = "A"
test get (lens_union (copy [A-Z]) (copy [0-9])) "O" = "Q"
test create (lens_union (copy [A-Z]) (copy [0-9])) "A" = "A"
test lens_union (copy [A-Z]) (copy ["]) = error

\ lens_disjoint_union \ The lens_disjoint_union operator also forms the union
of two lenses. However, it requires that the concrete and abstract types of the two lenses
be disjoint. The overloaded infix operator | desugars into lens_disjoint_union
when applied to lens values.

let lens_disjoint_union_contract (ll:lens) (l2:1ens) : bool
= land (mtype_compatible_cex (mtype 1l1) (mtype 12))
(land (disjoint_cex (stype 11) (stype 12))
(disjoint_cex (vtype 11) (vtype 12)))

let lens_disjoint_union
(1l1:1ens)
(12:1ens where lens_disjoint_union_contract 11 12)
(l:1lens where in_lens_type 1
(regexp_union (stype 11) (stype 12))
(regexp_union (vtype 11) (vtype 12)))

test get (lens_disjoint_union (copy [A-Z]) (copy [0-9])) "A" = "A"
test get (lens_disjoint_union (copy [A-Z]) (copy [0-9])) "Oo" = "Q"
test lens_disjoint_union (copy [A-Z]) (const [0-9] "A" "QO") = error

51



|lens_concat| The lens_concat operator forms the concatenation of two lenses.
The concrete and abstract types of the two lenses must each be unambiguously concaten-
able. The overloaded infix operator . desugars into lens_concat when applied to lens
values.

let lens_concat_contract (ll:lens) (l1l2:1lens) : bool
= land (mtype_compatible_cex (mtype 11) (mtype 12))
(land (splittable_cex (stype 11) (stype 12))
(splittable_cex (vtype 11) (vtype 12)))

let lens_concat
(11:1ens)
(12:1ens where lens_concat_contract 11 12)
(l:1lens where in_lens_type 1 (regexp_concat (stype 11) (stype 12))
(regexp_concat (vtype 11) (vtype 12)))

test get (lens_concat (copy [A-Z]) (copy [0-9])) "Al" = "Al"
test put (lens_concat (copy [A-Z]) (copy [0-9])) "B2" "Al"™ = "B2"
test create (lens_concat (copy [A-Z]) (copy [0-9])) "B2" = "B2"

The compose operator puts two lenses in sequence. The abstract type of the
lens on the left and the concrete type of the lens on the right must be identical.

let compose
(1l1l:1lens where rel_is_id (vequiv 11))
(12:1lens where land (aequiv (avtype 11) (astype 12))
(rel_is_id (sequiv 12)))
(l:1lens where in_lens_type 1 (stype 11) (vtype 12))

test get (compose (const [A-Z] "z" "A")
(const [Z] "X"™ "Zz")) "A" = "xX"

The 1lens_swap operator also concatenates lenses. However, it swaps the
order of the strings it creates on the abstract side. As with lens_concat, the concrete
and abstract types of the two lenses must each be unambiguously concatenable. The
overloaded infix operator ~ desugars into 1ens_swap when applied to lens values.

let lens_swap_contract (ll:lens) (l2:1lens) : bool
= land (mtype_compatible_cex (mtype 11) (mtype 12))
(land (splittable_cex (stype 11) (stype 12))
(splittable_cex (vtype 12) (vtype 11)))

let lens_swap
(11:1ens)
(12:1ens where lens_swap_contract 11 12)
(l:1lens where in_lens_type 1 (regexp_concat (stype 11) (stype 12))
(regexp_concat (vtype 12) (vtype 11)))

52



test get (lens_swap (copy [A-Z]) (copy [0-9])) "Al" = "1A"
test put (lens_swap (copy [A-Z]) (copy [0-9])) "2B"™ "Al" = "B2"
test create (lens_swap (copy [A-Z]) (copy [0-9])) "2B" = "B2"

The lens_star operator iterates a lens zero or more times. The iter-
ations of the concrete and abstract types of the lens must both be unambiguous. The
overloaded operator x desugars into lens_star when applied to a lens. Recall that
regexp_iter R 0 -1 ishow Rx desugars.

let lens_star_contract (l:lens) : bool
= land (iterable_cex (stype 1)) (iterable_cex (vtype 1))

let lens_star
(l:1lens where lens_star_contract 1)
(1’ :1lens where in_lens_type 1’
(regexp_star (stype 1))
(regexp_star (vtype 1)))

test get (lens_star (copy [A-Z])) "" = "V

test get (lens_star (copy [A-Z])) "ABCD" = "ABCD"
test put (lens_star (copy [A-Z])) "AB" "ABCD" = "ABR"
test create (lens_star (copy [A-Z])) "A" = "A"

The 1lens_plus operator iterates a lens one or more times. The iterations
of the concrete and abstract types of the lens must both be unambiguous (when non-
empty). The overloaded operator + resolves to 1ens_plus when applied to a lens.

let lens_plus
(l:1lens where land (iterable_cex (stype 1))
(iterable_cex (vtype 1)))
(1’ :1lens where in_lens_type 1’
(regexp_plus (stype 1))
(regexp_plus (vtype 1)))

test get (lens_plus (copy [A-Z])) "A" = "A"

test get (lens_plus (copy [A-Z])) "ABCD" = "ABCD"
test put (lens_plus (copy [A-Z])) "AB" "ABCD" = "ABR"
test create (lens_plus (copy [A-Z])) "A" = "A"

\ lens_option ‘ The lens_option operator runs a lens once or not at all. The concrete
and abstract types of the lens must both be disjoint from the empty lens. The overloaded
operator ? resolves to lens_option when applied to a lens.

53



let lens_option
(l:1lens where land (disjoint_cex (stype 1) EPSILON)
(disjoint_cex (vtype 1) EPSILON))
(1" :1lens where in_lens_type 1’
(regexp_union (stype 1) EPSILON)
(regexp_union (vtype 1) EPSILON))

test get (lens_option (copy [A-Z])) "" = "V

test get (lens_option (copy [A-Z])) "A" = "A"
test put (lens_option (copy [A-Z])) "B" "" = "B"
test create (lens_option (copy [A-Z])) "A" = "A"

The lens_iter operator iterates a lens a finite number of times. The
concatenations of the concrete and abstract types of the lens must both be unambiguous.
The overloaded operator {m, n} resolves into instances of 1ens_iter when applied to a
lens argument.

let lens_iter
(l:1lens where land (splittable_cex (stype 1) (stype 1))
(splittable_cex (vtype 1) (vtype 1)))
(min:int where bgeqg min 1)
(max:int where
land (bgeq max min)
(implies (bgt max min)
(land (disjoint_cex (stype 1) (regexp_iter (stype 1) 2 2))
(lor (land (rel_is_id (vequiv 1)) (is_basic 1))
(disjoint_cex (vtype 1) (regexp_iter (vtype 1) 2 2))))))
(1’ :1lens where in_lens_type 1’
(regexp_iter (stype 1) min max)
(regexp_iter (vtype 1) min max))

test get (lens_iter (copy [A-Z]) 1 4) "ABCD" = "ABCD"
test put (lens_iter (copy [A-Z]) 1 4) "AB" "ABCD" = "ABR"
test create (lens_iter (copy [A-Z]) 1 4) "A"™ = "A"

The invert operator swaps the get and create components of a lens, which
must be bijective.

let invert
(1l:1ens where land (bij 1) (is_basic 1))
(1’ :1lens where in_bij_lens_type 1’ (vtype 1) (stype 1))

test get (invert (const [A] "B" "A")) "B" = "A"
test invert (const [A-Z] "B" "A") = error

54



default| The default operator takes a lens 1 and a string d as arguments. It over-
rides 1’s create function to use put with d.

let default (l:lens where is_basic 1)
(d:string where matches (stype 1) d)
(1" :1lens where in_lens_type 1’ (stype 1) (vtype 1))

test create (default (const [A-Z] "X"™ "A") "B") "X" = "BR"

The partition operator takes two regular expressions R and S as ar-

guments and produces a lens whose get function transforms a string belonging to the
iteration of the union of R and S by sorting the substrings into substrings that belong to
R and S. The regular expressions R and S must be disjoint and the iteration of their union
must be unambiguous.

let partition
(R:regexp)
(S:regexp where land (disjoint_cex R S)
(iterable_cex (regexp_union R S)))
(l:1lens where in_lens_type 1
(regexp_star (regexp_union R S))
(regexp_concat
(regexp_star R)
(regexp_star S)))

test get (partition [A-Z] [0-9]) "AIB2C3" = "ABC1l23"
test put (partition [A-Z] [0-9]) "ABC123456" "A1lB2C3" = "A1B2C3456"

The merge operator takes a regular expression R and produces a lens whose get
function transforms a string belonging to the concatenation of R with itself by discarding
the second substring belonging to R. The regular expression R must be unambiguously
concatenable with itself.

let merge
(R:regexp where splittable_cex R R)
(l:1lens where in_lens_type 1 (regexp_concat R R) R)

test get (merge [A-Z]) "AA" = "A"
test get (merge [A-Z]) "AB" = "A"
test put (merge [A-Z]) "C" "AA" = "cCC"
test put (merge [A-Z]) "C" "AB" = "CB"

55



5.1.12 Resourceful Lenses

\ key,nokey, force_key, force_nokey| These functions defines the key annotation
of the characters under it. The force_key and force_nokey overrides previous defini-
tions while key and nokey only set the annotation for characters that does not have yet
an annotation.

let key (l:lens)
(1" :1lens where in_lens_type 1’ (stype 1) (vtype 1))

let nokey (l:lens)
(1’ :1lens where in_lens_type 1’ (stype 1) (vtype 1))

let force_key (l:lens)
(1’ :1lens where in_lens_type 1’ (stype 1) (vtype 1))

let force_nokey (l:lens)
(1" :1lens where in_lens_type 1’ (stype 1) (vtype 1))

\ lens_mat ch\ The lens_match operator takes as arguments a string t and a lens 1
and creates a “chunk” with tag t. The type checker requires that there is not a tag
inside 1 with the same identifier as the tag t. The operator <tag:aregexp> desug-
ars into lens_match and the operator <aregexp> desugars to lens_match with tag
greedy 0 "".

let lens_match
(t:tag)
(l:1lens where mtype_match_compatible_cex t (ktype 1) (mtype 1))
(1’ :1lens where in_lens_type 1’ (stype 1) (vtype 1))

The align operator converts a resourcefull lens 1 into a basic lens, making an
alignment phase internal to it.

let align
(1l:1ens)
(1’ :1lens where land (in_lens_type 1’ (stype 1) (vtype 1))
(is_basic 17))

The fiat operator takes a lens 1 as an argument. It behaves like 1, but overrides
its put component with a function that returns the original source exactly whenever the
update to the view is a no-op.

let fiat
(1l:1lens where is_basic 1)
(1”7 :1lens where in_lens_type 1’ (stype 1) (vtype 1))

56



5.1.13 Canonizer Components

\ uncanonized_type \ The uncanonized_type function extracts the “representative”
type component (i.e., the type of the domain of its canonize function) of a canonizer.

let uncanonized_type : canonizer —-> regexp

let uncanonized_atype : canonizer -> aregexp

\ canonized_type \ The canonized_type function extracts the “quotiented” type com-
ponent (i.e., the type of the codomain of its canonize function) of a canonizer.

let canonized_type : canonizer —-> regexp

let canonized_atype : canonizer -> aregexp

\ in_canonizer_type| The in_canonizer_type function tests whether a canonizer
has the given uncanonized and canonized types.

let in_canonizer_type (cn:canonizer) (U:regexp) (C:regexp)
= (land (equiv_cex (uncanonized_type cn) U)
(equiv_cex (canonized_type cn) C))

canonizer_is_basic‘ The canonizer is_basic function tests whether a canon-
izer is a basic canonizer (i.e. does not contain any chunk).

let canonizer_is _basic (cn:canonizer) : bool =
no_chunks (canonized_atype cn)

5.1.14 Canonizers

The cnrel function extracts the equivalence relation on a canonizer’s (canon-
ized) type.

let cnrel : canonizer —-> rel

The canonize function extracts the canonize component of a canonizer.
The record-style projection notation q. canonize desugars into canonize.

let canonize
(cn:canonizer)
(c:string where matches (uncanonized_type cn) c)
string

57



The choose function extracts the choose component of a canonizer. The record-
style projection notation g. choose desugars into choose.

let choose
(cn:canonizer)
(b:string where matches (canonized_type cn) b)
string

canonizer_of_lens \ The canonizer_of_lens operator builds a canonizer out of
a lens with the lens’s get function as the canonize component and create as choose.

let canonizer_ of lens (l:lens)
(cn:canonizer where in_canonizer_type cn (stype 1) (vtype 1))

canonizer_concat \ The canonizer_concat operator concatenates canonizers. Only
the concatenation of types on the left side needs to be unambiguous.

let canonizer_ concat
(cnl:canonizer)
(cn2:canonizer where

land (splittable_cex (uncanonized_type cnl) (uncanonized_type cn2))
(implies
(not (land (rel_is_id (cnrel cnl)) (rel_is_id (cnrel cn2))))
(splittable_cex (canonized_type cnl) (canonized_type cn2))))
(cn:canonizer where in_canonizer_type cn
(regexp_concat (uncanonized_type cnl) (uncanonized_type cn2))
(regexp_concat (canonized_type cnl) (canonized_type cn2)))

\ canonizer_union \ The canonizer_union operator forms the union of two canon-
izers. The types on the left need to be disjoint.

let canonizer_union
(cnl:canonizer)
(cn2:canonizer where land (disjoint_cex (uncanonized_type cnl)
(uncanonized_type cn2))
(lor (land (canonizer_is_basic cnl)
(canonizer_is_basic cn2))
(disjoint_cex (canonized_type cnl)
(canonized_type cn2))))
(cn:canonizer where in_canonizer_type cn
(regexp_union (uncanonized_type cnl) (uncanonized_type cn2))
(regexp_union (canonized_type cnl) (canonized_type cn2)))

58



‘canonizer_iter

The canonizer_iter operator iterates a canonizer. The iteration

of the type on the lef

t needs to be unambiguous. The overloaded operators *, +, ?, {m, n}

and {n, } all desugar into instances of canonizer_iter when applied to a canonizer.
If the second argument is negative, then the iteration is unbounded. For example, gx

desugars into canonizer_iter g 0 (-1).

let canonizer_iter
(cn:canonizer where
land (iterable_cex
(implies

(uncanonized_type cn))
(not (rel_is_id
(iterable_cex

(min:int where bgeqg min 0)

(cnrel cn)))
(canonized_type cn))))
(max:int)

(cn’ :canonizer where in_canonizer_type cn’

(regexp_iter
(regexp_iter

The

(uncanonized_type cn) min max)

(canonized_type cn) min max))

columnize primitive canonizer wraps long lines of text. It takes as

arguments an integer n, a regular expression R, a character s and a string nl. It pro-
duces a canonizer whose canonize component takes strings belonging to the iteration of
R, extended so that s and n1 may appear anywhere that s may, and replaces n1 with s
globally. Its choose component wraps a string belonging to the iteration of R by replacing

s with nl to obtain
equal to n.

let columnize
(k:int)
(R:regexp)
(sp:char)
(

disjoi

canonizer

a string in which (if possible) the length of every line is less than or

nl:string where

nt_cex R (regexp_concat

1)
(str nl)

1))

(regexp_star [~
(regexp_concat
(regexp_star [~

The following unit test illustrates the choose component of columnize.

test choose (columnize 5 (regexp_star [a-z 1) ' 7 "\n")
"abcdefg"-=
<<
a b c
d e £
g
>>

59



5.1.15 Quotient Lenses

The next few primitives construct lenses that work up to programmer-specified equiv-
alence relations. We call these structures quotient lenses. For details, see Foster et al.
[2008].

The left_quot operator quotients a lens 1 by a canonizer g on the left

by passing concrete strings through q.

let left_qgquot
(cn:canonizer)
(L:1lens where land (aequiv (canonized_atype cn) (astype 1))
(rel is_id (cnrel cn)))
(1" :1lens where in_lens_type 1’ (uncanonized_type cn) (vtype 1))

test get
(left_quot (columnize 5 (regexp_star [a-z ]) 7 7 "\n")
(copy (regexp_star [a—-z ])))
<<
a b c
de £
g
>>

= "abcdefg"

test create
(left_quot (columnize 5 (regexp_star [a-z ]) 7 7 "\n")
(copy (regexp_star [a—-z ])))
"a bcde"

<<
a b c
d e
>>

right_gquot ‘ The right_quot operator quotients a lens 1 by a canonizer g on the
right by passing abstract strings through q.

let right_quot

(l:1ens)

(cn:canonizer where land (aequiv (canonized_atype cn) (avtype 1))
(rel_is_id (cnrel cn)))

(1’ :1lens where in_lens_type 1’ (stype 1) (uncanonized_type cn))

60



The dupl operator takes as arguments a lens 1, a function £, and a regular ex-
pression R, which should denote the codomain of f. Its get function supplies one copy
of the concrete string to 1’s get function and one to £, and concatenates the results. The
put and create functions simply discard the part of the string computed by £ and use the
corresponding from 1 on the rest of the string. The concatenation of 1’s abstract type and
the codomain of £ must be unambiguous.

let dupl
(l:1lens where is_basic 1)
(R:regexp)
(f:string —-> (x:string where matches R x))
(1’ :1lens where in_lens_type 1’
(stype 1) (regexp_concat (vtype 1) R))

test get (dupl (copy [A-Z]) [A-Z] (get (copy [A-Z]))) "A" = "AA"
test put (dupl (copy [A-Z]) [A-Z] (get (copy [A-Z]))) "BC" "A" = "B"

The dup2 operator is like dupl but uses £ to build the first part of the output.

let dup2
(R:regexp)
(f:string -> (x:string where matches R x))
(l:1lens where is_basic 1)
(1’ :1lens where in_lens_type 1’
(stype 1) (regexp_concat R (vtype 1)))

test get (dup2 [A-Z] (get (copy [A-Z])) (copy [A-Z])) "A" = "AA"
test put (dup2 [A-Z] (get (copy [A-Z])) (copy [A-Z])) "BC" "A"™ = "C"

5.2 The Standard Prelude

The second module, Prelude, defines some common derived forms. Like Core, its val-
ues are available by default in every Boomerang program.

5.2.1 Regular Expressions

|ANYCHAR, ANY, ANYP| The regular expression ANYCHAR denotes the set of ASCII
characters, ANY denotes the set of all ASCII strings, and ANYP denotes the set of all ASCII
strings except for the empty string. By convention, we append a “P” to the name of a
regular expression to denote its “positive” variant (i.e., not containing the empty string).

let ANYCHAR : regexp = [7]
let ANY : regexp = ANYCHAR%*
let ANYP : regexp = ANYCHAR+

61



containing, containingP, not_containing, not_containingP ‘ The function
containing takes a regular expression R as an argument and produces a regular ex-
pression describing the set of all strings that contain a substring described by R. The -P
variants require non-empty strings.

let containing (R:regexp) : regexp = ANY . R . ANY
let containingP (R:regexp) : regexp = (ANY . R . ANY) - []

The function not_containing takes a regular expression R and produces a regular
expression describing the set of all strings not containing R.

let not_containing (R:regexp) : regexp = ANY - (containing R)
let not_containingP (R:regexp) : regexp = ANYP - (containing R)

SCHAR, S, SP \ The regular expressions SCHAR, S, and SP denote sets of space char-
acters.

let SCHAR : regexp = [ ]
let S : regexp = SCHAR«x*
let SP : regexp = SCHAR+

|[WSCHAR, WS, WSP| Theregularexpressions WSCHAR, WS, and WSP denote sets of whites-
pace characters.

let WSCHAR : regexp = [ \t\r\n]
let WS : regexp = WSCHARx
let WSP : regexp = WSCHAR+

INWSCHAR, NWS, NWSP| The regular expressions WSCHAR, WS, and WSP denote sets of
non-whitespace characters.

let NWSCHAR : regexp = [~ \t\r\n]
let NWS : regexp = NWSCHARx*
let NWSP : regexp = NWSCHAR+

\ newline, NLn ‘ The string newl ine contains the newline character. The strings given
by NLn each denote a newline followed by n spaces. These are used for indentation, for
example, in the Xm1 module.

let newline : string = "\n"
let NLO : string= newline

let NL1 : string= NLO . "™ "
let NL2 : string= NL1 . " "
let NL3 : string= NL2 . " "

62



let NL4 : string= NL3 . " "
let NL5 : string= NL4 . " "
let NL6 : string= NL5 . " "
let NL7 : string= NL6 . " "
let NL8 : string= NL7 . " "
let NL9 : string= NL8 . " "
let NL10 : string = NL9 . " "

\ DIGIT, NUMBER, FNUMBER\ The regular expressions DIGIT, NUMBER, and FNUMBER
represent strings of decimal digits, integers, and floating point numbers respectively.

let DIGIT : regexp = [0-9]
let NUMBER : regexp = [0] | [1-9] . DIGIT~»
let FNUMBER : regexp = NUMBER . ([.] . DIGIT+)?

‘UALPHACHAR, UALPHANUMCHAR‘ TheregukmexpnmsknlUALPHACHARinuiUALPHANUMCHAR
denote the set of upper case alphabetic and alphanumeric characters respectively.

let UALPHACHAR : regexp = [A-Z]
let UALPHANUMCHAR : regexp = [A-Z0-9]

The predicate is_cset on regular expressions determines whether a regu-

lar expression identifies a set of characters.

let is_cset (R:regexp) : bool = equiv_cex R (R & ANYCHAR)

The binary predicate subset decides whether the first regular expression is
a subset of the second.

let subset (Rl:regexp) (R2:regexp) : bool
= equiv_cex (R1 & R2) R1

5.2.2 Lenses

‘ lens_equiv ‘ The binary operator on lenses, 1ens_equiv, tests whether the astypes
and avtypes of two lenses are equivalent regular expressions (according to equiv).

let lens_equiv (ll:1lens) (l2:1ens) : bool =
(equiv_cex (stype 11) (stype 12)) &&
(equiv_cex (vtype 11) (vtype 12))

63



ins| Thelens ins maps the empty concrete string to a fixed abstract string. It is defined
straightforwardly using <->.

let ins (s:string) : (lens in EPSILON <=> s) = "" <-> s
test get (ins "ABC") "" = "ABC"
test put (ins "ABC" ) "ABC " nmn = nn

del| Thelens del deletes a regular expression. It is also defined using <->.
let del (R:regexp) : (lens in R <-> EPSILON) = R <-> ""

test get (del ANY) "Boomerang" = ""
test put (del ANY) "" "Boomerang" = "Boomerang"
test create (del ANY) "" = "0

The filter operator takes two regular expressions R and S as arguments
and produces a lens whose get function transforms a string belonging to the iteration of
the union of R and S by discarding all of the substrings belonging to R. The regular ex-
pressions R and S must be disjoint and the iteration of their union must be unambiguous.

let filter
(R:regexp)
(S:regexp where (disjoint_cex R S) && (iterable_cex (R | S)))
(lens in (R | S)* <=> S% )
= partition R S; ( del R . copy Sx )

test get (filter [A-Z] [0-9]) "AlB2C3" = "123"
test put (filter [A-Z] [0-9]) "123456" "AIB2C3" = "AlB2C3456"

‘merge_with_sep‘ The lens merge_with_sep behaves like merge, but allows a sep-
arator between the copied string.

let merge_with_sep (R:regexp) (s:string) : (lens in (R . s . R) <=> R) =
copy (R . s . R) . ins s;
merge (R . s);

copy R . del s

test (merge_with_sep [A-Z] ",").get "A,B" = "A"
test (merge_with_sep [A-Z] ",").put "C" into "A,B" = "C,B"
test (merge_with_sep [A-Z] ",").create "B" = "B,B"

5.2.3 Lens Predicates

\ lens_iterable \ This predicate is true for lenses with iterable stype and vtype.

let lens_iterable (l:lens) : bool =
iterable_cex (stype 1) && iterable_cex (vtype 1)

64



\ lens_splittable \ This predicate is true for a pair of lenses if the stypes and vtypes
are splittable.

let lens_splittable (ll:lens) (12:1lens) : bool =
splittable_cex (stype 11) (stype 12) &&
splittable_cex (vtype 11) (vtype 12)

lens_unionable, lens_disjoint \ This predicate is true for a pair of lenses if the
astypes are disjoint and the equivalence relation abstract domain of the second lens is the
identity relation.

let lens_unionable (ll:lens) (l2:1lens) : bool =
disjoint_cex (stype 11) (stype 12) &&
rel_is_id (vequiv 12) && is_basic 11 && is_basic 12

let lens_disjoint (ll:lens) (l2:1lens) : bool =
disjoint_cex (stype 11) (stype 12) &&
disjoint_cex (vtype 11) (vtype 12)

5.2.4 Quotient Lenses

The lens gconst is like const, but accepts an entire regular expression on the
abstract side. It is defined using quotienting on the right, the lens const, and a canonizer
built from const.

let gconst (C:regexp) (A:regexp) (a:string where matches A a) (c:string where ma
(lens in C <-=> A)

right_quot
(const C a c¢)
(canonizer_of_ lens (const A a a))

test get (gconst [A-Z] [a-z] "a" "A") "A" = "ag"
test put (qCOl’lSt [A—Z] [a—z] ngn "A") "pHn o wpn — nRpn

The lens gconst is like set (i.e., <->), but takes an entire regular expression on
the abstract side. It is defined using gconst.

let gset (C:regexp) (A:regexp) : (lens in C <-> A) =
gconst C A (representative A) (representative C)
test get (gset [A-Z] [a-z]) "A" = "a"

test get (gset [A-Z] [a—-z]) "z" = "a"

test put (gset [A-Z] [a-z]) "z" "A" = "A"

test put (gset [A-Z] [a—-z]) "z" "z" = "z"

65



gins, qins_representative\ The lens gins is like ins but accepts a regular ex-
pression in the put direction. It is defined using right quotienting and ins. The lens
gins_representative is +similar, but uses an arbitrary representative of E in the get
direction.

let gins (E:regexp) (e:string in E) : (lens in EPSILON <-> E) =
right_quot
(ins e)
(canonizer_of lens (const E e e))

test (get (gins [A-Z]+ "A™) "") = "A"
test (create (gins [A-Z]+ "A") "ABC") = ""
let gins_representative (E:regexp) : (lens in EPSILON <-> E) =

gins E (representative E)

test (get (gins_representative [A-Z]+) "") = "A"
test (create (gins_representative [A-Z]+) "ABC") = ""

The lens gdel is like del but produces a canonical representative in the back-
wards direction. It is defined using left quotienting.

let gdel (E:regexp) (e:string) : (lens in E <-> EPSILON) =
left_quot
(canonizer_ _of lens (default (del E) e))
(copy EPSILON)

test (get (gdel [A-Z]+ "ZzzZ") "ABC") = ""
test (put (gdel [A-Z]+ "zzz") "" "ABC") = "zzz"
test (put (gdel [A-Z]+ "Zzz") "1" "ABC") = error

5.2.5 Standard Datatypes

"a option, ('a,’b) maybe‘ The polymorphic datatypes option and maybe repre-
sents optional and alternative values respectively.

type "a option =
None | Some of ’a

type ('a,’b) maybe =
Left of "a | Right of 'b

66



5.2.6 Pairs

The polymorphic functions

fst and snd are the standard projections on

pairs.
let fst ('a) ('b) (p:'a x 'b) 'a =
let x,_ = p in x
let snd ('a) ('b) (p:'a x 'b) "b =
let _,y = p in vy

5.2.7 Lists of Lenses and Regular Expressions

|astypes, avtypes| Calculates the astypes and avtypes of lists of lenses.

let
let
let
let

(ls:lens List.t)
(ls:lens List.t)
(1s:lens List.t)
(1s:lens List.t)

astypes
avtypes
stypes
vtypes

|concatable| The list of regexps Rs

= List.map{lens} {aregexp} astype 1ls
List.map{lens}{aregexp} avtype 1ls
List.map{lens}{regexp} stype 1ls
List.map{lens}{regexp} vtype 1ls

#{regexp} [R1;R2;...;Rn] are concaten-

able with regexp separator S if the following are splittable:

e Rl and S

R1.S and R2

R1.S.R2.S and R3

R1.S...SRn-1and Rn

let concatable (rl
test concatable #{regexp}["abc"
test concatable #{regexp}["abc"
test concatable #{regexp}["a" |

concat_regexps, concat_lenses
respectively.

let concat_regexps (Rs:regexp L

List.fold_left{regexp}{regexp}
(fun (acc:regexp) (R:regexp)
EPSTLON Rs

regexp List.t)

bool =
;"def"] = true
;"def"] = true

"aa";"a"?] false

Concatenates a list of regular expressions or lenses,

ist.t)

regexp

-> acc R)

67



test concat_regexps #{regexp}["abc";"def"] = "abcdef"
test concat_regexps #{regexp}["a"{5};"a"+x] = "a"{5,}

let concat_lenses (ls:lens List.t where (concatable (stypes 1ls))
&& (concatable (vtypes 1s)))
(lens in concat_regexps (stypes 1s)
<-> concat_regexps (vtypes 1ls))
= List.fold_left{lens}{lens}
(fun (l_acc:lens) (l:lens) —-> 1l_acc . 1)
(copy EPSILON) 1s

test get (concat_lenses #{lens} [copy "a";copy "b";copy "c"]) "abc" = "abc"

disjoint_from_regexps,disjoint_regexps| Thefunctiondisjoint_from regexps
determines whether a given regexp is disjoint from a list of regular expressions. The func-

tion disjoint_regexps determines whether a list of regular expressions are pairwise
disjoint.

let disjoint_from regexps (R:regexp) (Rs:regexp List.t) =
List.fold_left{regexp}{bool}
(fun (ok:bool) (R’ :regexp) —>
ok && disjoint_cex R R')

true Rs
let disjoint_regexps (Rs:regexp List.t) : bool =
let (ok,_) = List.fold left{regexp}{bool * regexp List.t}
(fun (acc:bool * regexp List.t) (R:regexp) ->
let (ok,Rs) = acc in
(ok && disjoint_from_regexps R Rs,List.Cons{regexp} (R,Rs)))
(true, #{regexp}[]) Rs in
ok
test disjoint_regexps #{regexp}["a";"b";"c"] = true

union_regexps,union_lenses,disj_union_lenses \ Takes the union of a list
of regular expressions or lenses, respectively. By default, the non-disjoint lens union | |
is used; use disj_union_lenses for disjoint union |.

let union_regexps (Rs:regexp List.t) : regexp =
List.fold_left{regexp}{regexp}
(fun (acc:regexp) (R:regexp) —-> acc | R)
EMPTY Rs
test union_regexps #{regexp}["abc";"def"] = ("abc" | "def")
test union_regexps #{regexp}["a"{5};"a"*x] = ("a"{5} | "a"«x )

68



let union_lenses (ls:lens List.t where disjoint_regexps (stypes 1ls))
(lens in union_regexps (stypes 1s)
<-> union_regexps (vtypes 1ls))
List.fold left{lens}{lens}
(fun (l_acc:lens) (l:lens) —-> 1_acc || 1)
(copy EMPTY) 1s

test create (union_lenses #{lens}["z" <-> "a"; (copy [a-c])]) "a" =
test get (union_lenses #{lens} [copy "a";copy "b";copy "c"]) "a" = "a"

let disj_union_lenses (ls:lens List.t where
disjoint_regexps (stypes ls) &&
disjoint_regexps (vtypes 1s))
(lens in union_regexps (stypes 1s)
<-> union_regexps (vtypes 1ls))
= List.fold_left{lens}{lens}
(fun (l_acc:lens) (l:lens) ->
(1_acc | 1))
(copy EMPTY) 1s

test disj_union_lenses #{lens} [copy [a]l; "a" <-> "b"] = error
test get (disj_union_lenses #{lens} [copy "a";copy "b";copy "c"]) "a"

5.2.8 Lenses with List Arguments

These final two combinators take lists as arguments (and so have to be defined here in-
stead of Core.)
First, we have permute.

The lens permute is an n-ary, permuting concatenation operator on lenses.
Given a concrete string, it splits it into n pieces, applies the get function of the correspond-

ing lens to each piece, reorders the abstract strings according to the fixed permutation
specified by sigma, and concatenates the results. Given a permutation sigma and a list
of lenses 1 = #{lens}[11;12;...;1n] with types Ci <-> Ai. It produces a lens
with typeCl1.C2...Cn <-> Asigma(l) .Asigma(2)...Asigma (n).

let lens_permute
(sigma:int List.t)
(ls:lens List.t where
(List.valid_permutation{lens} sigma ls) &&
((concatable (stypes 1ls)) &&
(concatable (List.permute{regexp} sigma (vtypes 1s)))))
(lens in concat_regexps (stypes ls) <->
concat_regexps (List.permute{regexp} sigma (vtypes 1s)))

69

Z



test stype (lens_permute #{int}[1;0] #{lens}["abc";"def"]) = "abcdef"

test vtype (lens_permute #{int}[1;0] #{lens}["abc";"def"]) = "defabc"
test get (lens_permute #{int}[2;0;1] #{lens}["abc";"def";"ghi"])
"abcdefghi" = "defghiabc"

test get (lens_permute
#{int}[2;1;0]
#{lens} [ (copy UALPHACHAR) ;
(copy UALPHACHAR) ;
(copy UALPHACHAR)]) "ABC" = "CBA"

|sortable, sort| The canonizer sort puts substrings into sorted order according to
a list of regular expressions. An exception is raised if the unsorted string does not have
exactly one substring belonging to each regular expression. This allows us to assign sort
a type that is compact (though imprecise); see ? for a discussion.

let sortable (rl:regexp List.t) : bool =
disjoint_regexps (List.map{regexp}{regexp} (fun (r:regexp) -> r — EPSILON)
&& iterable_cex ((union_regexps rl) - EPSILON)
let sort
(rl:aregexp List.t where sortable (List.map{aregexp}{regexp} rxdrop rl))
(cn:canonizer where (uncanonized_type cn = (union_regexps (List.map{aregexp}{r
&& (canonized_type cn = concat_regexps (List.map{aregexp}{reg
test canonize (sort #{regexp} [UALPHACHAR; DIGIT]) "Al" = "Al"
test canonize (sort #{regexp} [UALPHACHAR; DIGIT]) "1A" = "Al"
test canonize (sort #{regexp} [UALPHACHAR; DIGIT]) "A" = error
test sort #{regexp}["a";"a"] = error

test uncanonized_type (sort #{regexp} [UALPHACHAR; DIGIT]) =
(UALPHACHAR | DIGIT) *

test canonized_type (sort #{regexp} [UALPHACHAR; DIGIT]) =
(UALPHACHAR . DIGIT)

5.2.9 Miscellaneous
The operator iterate compose £ with itself i times using b for the first

argument, ie., £ (£ (... (f b)...)) where f appears i times.
let iterate ("a) (i:int where (bgeg i 0)) (f:'a -> ’'a) (b:’a) : "a =
List.fold left{int}{’a}

(fun (acc:"a) (i:int) -> £ acc)
b
(List.mk_seq i)

test (iterate{regexp} 3 (fun (x:regexp) -> x | "(".x.")") [a-z]).get "((b))" ="

test (iterate{regexp} 3 (fun (x:regexp) -> x | "(".x.")") [a-z]).get "((((b))))"

70



Gives a string representation of the value. Some values cannot be translated in
tull, e.g., functions.

let show : forall 'a => "a -> string

5.3 Lists

The List module defines a datatype for polymorphic list structures. In this module
we cannot use the Boomerang notation for lists because it is resolved using List.Nil and
List.Cons, which are not valid names while the List module is being defined.

A list is either the Ni1 list or a Cons of a head and a tail.

type "a t = Nil | Cons of "a x 'a t

empty, nonempty \ Predicates for detecting (non)empty lists.

let empty ('a) (l:’a t) : bool =
match 1 with
| Nil -> true
| Cons(_) -> false
let nonempty (’'a) (l:'a t) : bool = not (empty{’a}l 1)

The selectors hd and t1 pull out the first and last parts of a Cons-cell, respec-
tively.

let hd ("a) (xs:’a t) : "Ta =
let (Cons(x,_)) = xs in
X

let t1 ('a) (xs:'a t) : "a t =
let (Cons(_,xs)) = xXs in
XS

fold_left| Boomerang doesnotsupportrecursion. However, we provide the fold_left
function on lists via a built-in primitive.

let fold_left ("a) ('b) (£:'b -> "a -> 'b) (acc:'b) (l:'a t) : 'b

71



Calculates the length of a list.

let length ("a) (1 : "a t) : int =
fold_left{’a}{int}
(fun (n:int) (v:’a) -> plus n 1)
01

test length{bool} Nil{bool} = 0
test length{bool} (Cons{bool} (true,Cons{bool} (false,Nil{bool}))) = 2

The function mk_seq returns a list of integers from 0 to n-1.

let mk_seqg (n:int where n geq 0) : (l:int t where length{int} 1 = n)

The function reverse can be defined straightforwardly using fold_left.

let reverse ('a) (1 : '"a t) : "a t =
fold_left{’a}l{’a t}
(fun (t:’a t) (h:"a) -> Cons{’a}(h,t))
Nil{’a}
1

The function append can be defined using fold_left and reverse.

let append ("a) (11 : "a t) (12 : 'a t) : "a t =
fold left{’al}{’"a t}
(fun (1l:’7a t) (x:’a) —-> Cons{’a}l(x,1))
12
(reverse{’a} 11)

map, rev_map \ The function map can be defined (inefficiently) using fold_left and
reverse. The rev_map is more efficient, but leaves the list reversed.

let rev_map ('a) ('b) (f:'a -> '"b) (l:'a t) : 'b t =
fold_left{’a}l{’'b t}
(fun (t:"b t) (h:"a) -> Cons{’b}(f h,t))

Nil{’b}
1
let map ("a) ('b) (f:'a -> ’'b) (l:a t) : "b t =

reverse{’'b} (rev_map{’al{’b} £ 1)

72



The function exists tests if a predicate holds of some element of the list.

let exists ("a) (t:’a —> bool) (l:’a t) : bool =
fold left {’a}{bool} (fun (b:bool) (h:"a) -> b || t h)
false
1

The function for_all tests if a predicate holds of every element of the list.

let for_all ("a) (t:’a —-> bool) (l:'a t) : bool =
fold_left {’a}{bool} (fun (b:bool) (h:’a) -> b && t h)
true
1

The function member tests if an element is a member of the list. It is defined
using exists.

let member ('a) (x:’7a) (l:"a t) : bool =
exists{’a} (fun (h:’a) -> x = h) 1

5.3.1 Permutations

A permutation is an integer list, mapping positions to other positions: if the ith entry of

a permutation is the number j, then the ith element in the original list will be the jth ele-

ment in the permuted list. A permutation for the list # {bool} [true;true; false;true; false]
mightbe #{int} [0;1; 2; 3; 4] (the identity permutation) or # {int} [4;3;2;1; 0] (re-

versal).

\ valid_permutation \ The predicate valid_permutation is true when given the
given permutation can be applied to the given list.

let valid_permutation (’"a) (sigma:int t) (l:’a t) : bool

test valid_permutation{bool} Nil{int} Nil{bool}
test valid_permutation{bool}
(Cons{int} (1,Cons{int} (0,Nil{int})))
(Cons{bool} (false, Cons{bool} (true,Nil{bool}))) = true
test valid_permutation{bool}
(Cons{int} (1,Cons{int} (1,Nil{int})))
(Cons{bool} (false,Cons{bool} (true,Nil{bool})))
test valid_permutation{bool}
(Cons{int} (0 - 1,Cons{int} (1,Nil{int})))
(Cons{bool} (false,Cons{bool} (true,Nil{bool}))) = false
test valid_permutation{bool}

true

false

73



(Cons{int} (0,Cons{int} (1,Cons{int} (2,Nil{int}))))

(Cons{bool} (false,Cons{bool} (true,Nil{bool}))) = false
test valid_permutation{bool}

(Cons{int} (1,Nil{int}))

(Cons{bool} (false,Cons{bool} (true,Nil{bool})))

false

test valid_permutation{bool}
(Cons{int} (1,Cons{int} (2,Nil{int})))

(Cons{bool} (false,Cons{bool} (true,Nil{bool})))

false

The operator permute permutes a list according to a given permutation.

let permute (’a)
(sigma:int t)
(l:"a t where
"a t

valid_permutation{’a} sigma 1)

test permute{bool} Nil{int} Nil{bool} = Nil{bool}

test permute{bool}

(Cons{int} (0,Cons{int} (1,Nil{int})))
(Cons{bool} (false,Cons{bool} (true,Nil{bool})))
= (Cons{bool} (false,Cons{bool} (true,Nil{bool})))

test permute{bool}

(Cons{int} (1,Cons{int} (0,Nil{int})))

(Cons{bool} (false,Cons{bool} (true,Nil{bool})))
= (Cons{bool} (true,Cons{bool} (false,Nil{bool}))

test permute{string}

)

(Cons{int} (0,Cons{int} (2, Cons{int} (1,Nil{int}))))
(Cons{string} ("a",Cons{string} ("b",Cons{string} ("c",Nil{string}))))
= (Cons{string} ("a",Cons{string} ("c",Cons{string} ("b",Nil{string}))))

permutations ‘ The operator permutations returns a list of all possible permuta-

tions for lists of a given length.

let permutations : (n:int where (n geq 0)) —-> (int t) t

test permutations 0 =

test permutations 1

test permutations 2

(Cons{int t} (Nil{int},

Nil{int t}))

(Cons{int t} (Cons{int} (0,Nil{int}),

Nil{int t}))

(Cons{int t} (Cons{int} (0,Cons{int} (1,Nil{int})),
Cons{int t} (Cons{int} (1,Cons{int} (0,Nil{int})),
Nil{int t})))

74



invert_permutation \ The operator invert_permutation inverts a permutation
sigma, calculating the permutation sigma_invsuchthatpermute_list{’a} sigma_inv (permu:
forall 1.

let invert_permutation : int t -> int t
let sort : forall 'a => ('a -> "a -> int) -> "a t -> ’"a t
test sort{int} minus (Cons{int} (3, Cons{int} (4, Cons{int} (1, Cons{int} (0,

Nil{int}))))) = (Cons{int} (0, Cons{int} (1, Cons{int} (3, Cons{int} (4,
Nil{int})))))

5.4 Sorting

The Sort module defines functions for building lenses that do sorting.

5.4.1 Permutation Sorting

Using the lens_permute operator, and the functions for manipulating integer lists rep-
resenting permutations from the List module it is straightforward to define lenses that
do sorting.

|perms_regexps| The perms_regexps function computes the permutations of a list
of regular expressions as a list of lists of regular expressions.

let perms_regexps (rl:regexp List.t) : (regexp List.t) List.t =
List.map{int List.t}{regexp List.t}
(fun (sigmai:int List.t) -> List.permute{regexp} sigmai rl)

(List.permutations (List.length{regexp} rl))

test perms_regexps #{regexp}["a";"b"]
= #{regexp List.t} [#{regexp}["a";"b"]; #{regexp}["b";"a"]]

[perm_regexps| Theperm_regexps function is similar but flattens the inner lists us-
ing regexp_concat.

let perm_regexps (rl:regexp List.t) : regexp List.t =
List.map{regexp List.t}{regexp} concat_regexps (perms_regexps rl)

test perm_regexps #{regexp}["a";"b"]
= #{regexp}["ab";"ba"]

75



\ perm_sortable \ The perm_sortable predicate returns t rue iff the concatenations
of all permutations of a list of regular expressions are unambiguous and also disjoint.

let perm_sortable (rl:regexp List.t) : bool =
let perms = perms_regexps rl in
List.for_all{regexp List.t} (fun (pi:regexp List.t) —-> concatable pi) perms
&& disjoint_regexps (List.map{regexp List.t}{regexp} concat_regexps perms)

The perm_sort lens sorts a list of regular expressions using instances of

the lens_permute combinator

let perm_sort
(rl:regexp List.t where perm_sortable rl)
(lens in union_regexps (perm_regexps rl) <-> concat_regexps rl) =
let k : int = List.length{lens} rl in

let ls_perms : lens List.t =
List.map{int List.t}{lens}
(fun (sigma:int List.t) ->
let sigma_inv = List.invert_permutation sigma in
lens_permute sigma (List.permute{lens} sigma_inv rl))
(List.permutations (List.length{lens} rl)) in
List.fold_left{lens}{lens}
(fun (acc:lens) (permi:lens) —-> acc || permi)

(copy EMPTY) 1ls_perms

let 13 : (lens in ("abc" | "acb" | "bac" | "bca" | "cab" | "cba") <-> "abc") =
perm_sort #{regexp}["a";"b";"c"]

test 13.get "abc" = "abc"

test 13.get "acb" = "abc"

test 13.get "bac" = "abc"

‘perm_sort_concat‘ The perm_sort_concat quotient lens uses a canonizer built
using perm_sort to sort the source string before it is processed by (the concatenation of)
a list of lenses.

let perm_sort_concat
(ls:lens List.t where perm_sortable (stypes 1ls) && concatable (vtypes 1s))
(lens in union_regexps (perm_regexps (stypes 1ls)) <-> concat_regexps (vtypes
= left_quot (canonizer_ of_ lens (perm_sort (stypes 1ls))) (concat_lenses 1s)

‘perm_concat‘ The perm_sort_concat lens does sorting, but its type on the source
side grows as the factorial of the regular expressions being sorted. The final sort_concat
lens uses the sort canonizer, which has a much more compact (although imprecise) type.

76



let sort_concat

(1s:1lens List.t where sortable

(union_regexps
(astypes 1s))

(lens in
= left_quot (sort
let 1s (lens in

sort_concat #{lens}["a";

test
test
test
test
test
test

get
get
get
get
get
put

1s
1s
1s
1s
1ls
1s

" abcll
" Cba"
"bca"
"bba"
"dba"
" abc"

(stypes 1s)

&& concatable

(stypes 1s))* <-> concat_regexps

[abc] * <=> "abc") =

" abc "
" abc n
" abc "

= error

error

n cba n

let partition_sort_concat

(ls:1lens List.t where concatable

(1l:1ens where sortable

(lens in

let cn_partition
canonizer_of_lens

in

(union_regexps

(concat_regexps

let cn_sort = sort

left_quot cn_partition

test
test

(partition_sort_concat #{lens} [copy
(partition_sort_concat #{lens} [copy

"b"; "c"]

n abc "

(List.Cons{regexp}
&& splittable_cex

(concat_lenses 1s)

(vtypes 1s))

(vtypes 1ls))
(vtypes 1s))

(stype 1,stypes 1ls))

(concat_regexps (vtypes 1ls)) (vtype 1)x* )
(stypes 1ls) | (stype 1))*x <->
(vtypes 1s) (vtype 1)* ))
(partition ((union_regexps (stypes 1ls)) - EPSILON)
(stypes 1s) in
(left_gquot cn_sort (concat_lenses 1ls) . 1x )

5.5 Command line parsing

let get_prog_name

‘create_bool‘

let create_bool

unit -> string

[A=Z]; copy [0-9]]
[A-Z]; copy [0-9]1]

(copy [a-z])
(copy [a-z])

create_bool name default doc fulldoc mfamszipnﬁmfnce
such that if -name is present in the command line, then the value will be true. If
-name=false is present in the command line then the value will be false.

let alias_bool

let read_bool

bool_prefs -> string —-> unit

(name:string) (default:bool)

bool_prefs —-> bool

77

(doc:string)

bool_prefs

(stype 1
.get "a
.put "7

)
)



let create_int (name:string) (default:int) (doc:string) : int_prefs

let alias_int : int_prefs -> string -> unit

let read_int

int_prefs -> int

let create_string (name:string) (default:string) (doc:string) : string_prefs
let alias_string : string_prefs -> string -> unit

let read_string : string_prefs -> string

let create_string_list (name:string) (doc:string) : string list_prefs

let alias_string_list : string_list_prefs -> string -> unit

let read_string_list : string list_prefs -> string List.t

let print_usage : string -> unit

extern_rest

extern_rest () returns the preference for anonymous arguments.

let extern_rest : unit -> string list_prefs

let extern_output : unit -> string_prefs

let extern_lens : unit -> string list_prefs

let extern_source : unit —-> string_list_prefs

let extern_view : unit -> string list_prefs

let extern_expression : unit -> string_list_prefs

let extern_check : unit -> string_list_prefs

let extern_include : unit -> string_list_prefs

let extern_test : unit -> string list_prefs

let extern_testall : unit -> bool_prefs

let extern_debug : unit -> string_list_prefs

let extern_debugtimes : unit -> bool_prefs

let extern_log : unit -> bool_prefs

let extern_logfile : unit -> string_prefs

let extern_terse : unit -> bool_prefs

let extern_timers : unit -> bool_prefs

let extern_colorize : unit -> bool_prefs

78



5.6 System functions

The read function reads the contents of a file from the local filesystem. If the
argument is -, it reads the contents of the standard input.

let read : string —-> string

The write function writes a string to a file on the local filesystem. If the name
of the file is -, the output is the standard output.

let write : string -> string -> unit
let put_str : string —-> unit
= write "-"

The exec function executes a shell command.

let exec : string -> string

’ file exists ‘ Test if a file with the given name exists.

let file_exists : string —> bool

’ is_directory ‘ Returns t rue if the given name refers to a directory, false if not.

let is_directory : string -> bool

Remove the given file name from the file system.

let remove : string —-> unit

Rename a file. The first argument is the old name and the second is the new
name. Returns t rue iff the file has been renamed.

let rename : string -> string -> bool

Return the current working directory of the process.

let getcwd : unit -> string

Operating system currently executing Boomerang. The return is the same as
the ocaml function sys.os_stype and is

e "Unix" (for all Unix versions, including Linux and Mac OS X),
e "Win32" (for MS-Windows, OCaml compiled with MSVC++ or Mingw),

e "Cygwin" (for MS-Windows, OCaml compiled with Cygwin).
let os_type : string

79



Chapter 6

The Boomerang System

6.1 Running Boomerang

All of the interactions with Boomerang we have seen so far have gone via unit tests. This
works well for interactive lens development, but is less useful for batch processing of
tiles. Boomerang can also be involved from the command line:

Usage:
boomerang [get] 1 S [options] get
or boomerang [put] 1 V S [options] put
or boomerang create 1 V [options] create
or boomerang M.boom [N.boom...] [options] run unit tests for M, N,

To try this out, create a file comps—conc. txt containing the following lines:

Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

and run the command
boomerang get QuickStart.comps comps-conc.txt
You should see

Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English

written to the terminal.
Now let’s do the same thing, but save the results to a file:

boomerang get QuickStart.comps_cmdline comps-conc.txt —-o comps—-abs.txt

Next let’s edit the abstract file to

80



Jean Sibelius, Finnish
Benjamin Britten, English
Alexandre Tansman, Polish

and put the results back:
boomerang put QuickStart.comps_cmdline comps—abs.txt comps-conc.txt
You should see

Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Alexandre Tansman, 0000-0000, Polish

printed to the terminal.

6.2 Running a Boomerang program

When Boomerang is called with another name, Boomerang run the module with this
name passing all command line arguments to the module. Boomerang still interpret all
arguments that are not interpreted by the module.

The examples/address.boomis a complete Boomerang program. It does transfor-
mations between VCard, XCard and CSV files. To run it, you need to create a link to
Boomerang with the name address:

> 1n -s /path/to/trunk/bin/boomerang address

If you run address now Boomerang will call the Address module. To try this out,
create a file contacts. csv containing the following lines:

Doe, John, hello world (note), 792-8134 (h), 732-4684 (h)
and run the command

./address get contacts.csv xml
You should see

<xcard>
<vcard>
<n>
<family>Doe</family>
<given>John</given>
</n>
<note>hello world</note>
<tel-home>792-8134</tel-home>
<tel-home>732-4684</tel-home>
</vcard>
</xcard>

81



written to the terminal. As address is not only one lens between two types, we need
to specify to which format we are converting (the xml in our previous example). For
example, to transform the csv into a vcard you should run

./address get contacts.csv vcf

The put is similar, but both arguments are a file and first is as the updated view and
the second is the old source. To try this out, create a file updated.xml containing the
following lines:

<xcard>
<vcard>
<n><family>Doe</family><given>Sally</given></n>
<tel-home>792-8134</tel-home>
<tel-home>732-4684</tel-home>
</vcard>
<vcard>
<n>
<family>Doe</family>
<given>John</given>
</n>
<note>updated</note>
<tel-home>792-8134</tel-home>
</vcard>
</xcard>

and run the command
./address put updated.xml contacts.csv
You should see

Doe, Sally, 792-8134 (h), 732-4684 (h)
Doe, John, updated (note), 792-8134 (h)

6.3 Creating a Boomerang program

All you need to create a Boomerang program, in addition to write a lens, is to write a
main function that takes unit and returns unit or int. In the second case, the return of
main is the return code of the program.

Boomerang programas receive command line arguments using the Prefs library. The
bibtex.boom example can be a good start to see how to write a Boomerang program,
just look at the main function at the end of the file.

If you need to do more than just use anonymous arguments, see the Prefs library
and the conflin.boom example.

82



6.4 Navigating the Distribution

If you want to check out the code, here is one reasonable order to look at the files:

src/lenses/core.boom
src/lenses/prelude.boom
src/blenses.ml
src/bcompiler.ml
src/balign.ml
src/toplevel.ml

core lenses

important derived lenses

native definitions of lenses and canonizers
the Boomerang interpreter

the alignment functions

the top-level program

83



Chapter 7

Case Studies

Under construction. For now, see the demos in the examples directory.
In the examples directory, you can find some of the other Boomerang programs we
have written:

demo .boom: A simple demo, similar to composers lens.
addresses.boom: VCard, CSV, and XML-formatted address books.
bibtex.boom: BiBTeX and RIS-formatted bibliographies.
uniProtV2.boom: UniProtKB / SwissProt lens.

conflin.boom: Management tool for multiple versions of a file.

xsugar/x: example transformations from the XSugar project.

We will continue adding to this set of examples as we tidy and package our code...
and we hope you'll write and let us know about the lenses you write!

84



Bibliography

Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational lenses: A lan-
guage for updateable views. Technical Report MS-CIS-05-27, Dept. of Computer and
Information Science, University of Pennsylvania, December 2005.

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan
Schmitt. Boomerang: Resourceful lenses for string data. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), San Francisco, California, Jan-
uary 2008.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bi-directional tree transformations: A linguistic approach to
the view update problem. ACM Transactions on Programming Languages and Systems, 29
(3):17, 2007. ISSN 0164-0925. Extended abstract presented at Principles of Programming
Languages (POPL), 2005.

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient lenses. In ACM
SIGPLAN International Conference on Functional Programming (ICFP), Victoria, British
Columbia, September 2008.

85



	1 Introduction
	1.1 Lenses
	1.2 Boomerang Overview
	1.3 An Example Lens
	1.4 Getting Started

	2 Quick Start
	2.1 Installation
	2.2 Simple Lens Programming
	2.2.1 Unit Tests
	2.2.2 Type Checking

	2.3 The Composers Lens
	2.3.1 Basic Composers Lens
	2.3.2 Resourceful Composers Lenses

	2.4 Grammars
	2.4.1 Rewriting the Composers Lens with Grammars
	2.4.2 Mutually-Recursive Grammars


	3 Alignment
	3.1 Tags
	3.2 Keys
	3.3 Learning with examples
	3.3.1 Dictionary
	3.3.2 Greedy
	3.3.3 Setlike
	3.3.4 Positional


	4 The Boomerang Language
	4.1 Lexing
	4.1.1 String Literals
	4.1.2 Identifiers
	4.1.3 Regular Expressions

	4.2 Parsing
	4.2.1 Modules and Declarations
	4.2.2 Expressions
	4.2.3 Identifiers
	4.2.4 Parameters
	4.2.5 Sorts
	4.2.6 Patterns

	4.3 Coercions
	4.4 Operators

	5 The Boomerang Libraries
	5.1 The Core Definitions
	5.1.1 Equality
	5.1.2 Booleans
	5.1.3 Integers
	5.1.4 Characters
	5.1.5 Strings
	5.1.6 Regular Expressions
	5.1.7 Tags
	5.1.8 Annotated Regular Expressions
	5.1.9 Equivalence Relations
	5.1.10 Lens Components
	5.1.11 Lenses
	5.1.12 Resourceful Lenses
	5.1.13 Canonizer Components
	5.1.14 Canonizers
	5.1.15 Quotient Lenses

	5.2 The Standard Prelude
	5.2.1 Regular Expressions
	5.2.2 Lenses
	5.2.3 Lens Predicates
	5.2.4 Quotient Lenses
	5.2.5 Standard Datatypes
	5.2.6 Pairs
	5.2.7 Lists of Lenses and Regular Expressions
	5.2.8 Lenses with List Arguments
	5.2.9 Miscellaneous

	5.3 Lists
	5.3.1 Permutations

	5.4 Sorting
	5.4.1 Permutation Sorting

	5.5 Command line parsing
	5.6 System functions

	6 The Boomerang System
	6.1 Running Boomerang
	6.2 Running a Boomerang program
	6.3 Creating a Boomerang program
	6.4 Navigating the Distribution

	7 Case Studies

