PyNet API Documentations

Xiao Zhang, Haoyuan Zhang
November 28, 2017

1 Installation

Please go inside the PyNet folder directory and run the command in the terminal (either Windows or Linux) to
compile the C code.

Also,

python setup.py build_ext - -inplace

you need to install cython and pickle package in order to execute PyNet properly.

2 Layer

Applies a linear transformation to the incoming data: y = A x x + b

Parameters

input_channel(int): number of input channel
— output_channel(int): numbers of channels produced by the linear layer

— name(string): the name of layer (default is None)

bias: the label whether to introduce bias in this linear layer (default is True)
Shape
— Input: (N, inChannel) where N represents the batch size and inChannel is the number of input feature

dimension.

— Output: (N, outChannel) where N represents the batch size and outChannel is the number of output
feature dimension.

Variables

— w: the learnable weights has shape (inChannel x outChannel)
— b: the learnable bias has shape (outChannel)
— grad_w: the gradient of weight, which has shape (inChannel x outChannel)

grad_b: the gradient with respect to bias, which has shape (outChannel)

Upsample a given multi-channel spatial data, the algorithm is available for upsampling is nearest neighbor
and bilinear for 4D input data.

Parameters

— size(tuple, optional): a tuple of ints(Height_out, Width_out) output sizes
— scale(int/tuple of python:ints, optional): the multiplier for the image height / width

— name(string): the name of the Upsample layer

Shape

— Input: (N, C, H;,, W;,,) where C represents the channel number of input data
— Output: (N, C, Hout, Wout)

Applies the rectified unit function element-wise ReLU (z) = maz(0, x).

Parameters
— name(string): the name of the Relu layer
Shape

— Input: (N, *) where * means any number of additional dimensions

— Output: (N, *) same shape as the input data

Applies the element-wise function element-wise f(z) = 1/(1 + exp(—zx)).

Parameters
— name(string): the name of the Sigmoid layer
Shape

— Input: (N, *) where * means any number of additional dimensions

— Output: (N, *) same shape as the input data

Flattens the input data while maintaining the batch size.

Parameters
— name(string): the name of the Flatten layer
Shape

— Input: (N, C, H;p, Win)
— Output: (N, C x Hy, X Wiy)

Applies the Softmax function to an n-dimensional input data rescaling then so that the elements of the
n-dimensional output data lie in the range (0, 1) and sum to 1. The Softmax function is defined as

fila) = eap(a)/ 3 eapla;)

J

Parameters
— name(string): the name of the Softmax layer
Shape

— Input: (N, K) where N and K denotes the batch size and dimension of data respectively
— Output: (N, K) same shape as the input

The criterion that measures the mean squared error between n elements in the input x and target y. The
function is defined as

12 loss(z,y) = (1/n) x Z |2 — il

x and y arbitrary shapes with a total of n elements each. The sum operation still operates over all elements,
and divides by n.

Parameters

— average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

— name(string): the name of the L2 loss layer
Shape

— Input x: (N, *) where * denotes any number of additional dimensions

— Target y: (N, *) same shape as x

The criterion that measures the Binary Cross Entropy between the target and the prediction. The function
is defined as

loss(p,t) = —(1/n) x Z{t x Log(pli]) + (1 — t[i]) x log(1 — pli])}

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target
t/i] should be numbers between 0 and 1.

Parameters
— average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

— name(string): the name of the Binary_cross_entropy_loss layer
Shape
— Input p: (N, *) where * denotes any number of additional dimensions

— Target t: (N, *) same shape as p

— Output: scalar

This criterion measures the negative log likelihood loss in one single class. It is useful when training a
classification problem with C classes. The input is expected to contain scores for each class, which has to be
a 2D matrix of size (batch_size, C).

This criterion expects a class index (0 to C-1) as the target for each value of a 1D matrix of size batch_size.
The loss function is defined as

loss(p,t) = —(1/n) x Z{log i,t[i]])}

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target
t/i] should be numbers between 0 and 1.

Parameters

— average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

— name(string): the name of the Binary_cross_entropy_loss layer
Shape

— Input x: (N, *) where * denotes any number of additional dimensions

— Target y: (N, *) same shape as x

Applies a 2D convolution over an input feature map. This layer is doing cross-correlation instead of convo-
lution. The equation to compute output shape should be

Sy = Sin — 2 % padding + kernel_size 1

stride

Where Sj,u¢, Sin, Tepresents the output size and input size respectively.

Parameters

output_channel(int): Number of channels produced by the convolution layer.

kernel_size (int or tuple): Size of convolution kernel
— padding (int or tuple): zero-padding added to both sides of the input

— stride (int or tuple): stride of convolution

name (string): the name of layer

— bias (boolean): if True, adding learnable bias to the output
Shape

— Input: (N, Cin, Hin, Win)

— Output: (N, Cout, Houts Wout)
Variables

— w: the learnable weight has shape (Cyyt, Cint, kernel_size_h, kernel _size_w)
b: the learnable bias has shape (1, Cpye, 1,1)

grad_w: the gradient of weight, which has shape (Cyyt, Cint, kernel_size_h, kernel_size_w)

grad_b: the gradient with respect to bias, which has shape (1, Cout,1,1)

Applies a 2D Maxpooling over an input feature map. The equation to compute output shape should be

Sin — 2 * padding + kernel_size

Sout = +1

stride

Where Syut, Sin, represents the output size and input size respectively.

Parameters

kernel_size (int or tuple): Size of convolution kernel

padding (int or tuple): zero-padding added to both sides of the input
— stride (int or tuple): stride of convolution

— name (string): the name of layer
Shape

— Input: (N, Cin, Hin, Win)
— Output: (N, Couts Hout, Wout)

Applies a 1D batchnormalization over input feature. The mean and standard-deviation are calculated per-
channel over mini-batch. This layer perform the algorithm:

Y — Lm(l‘) X gamma _|_ beta
var(zx) + eps

The eps is a small value added to the denominator for numerical stability, which is set 1le~°

Parameters
— momentum (float): The momentum used for running-mean and running-val
Shape

— Input: (N, C) where C represents the channel number
— Output: (N, C)

Variables

beta: the learnable parameter has shape (C)

gamma: the learnable parameter has shape (C)

r_mean: the mean value used for testing, which has shape of (C)

r_var: the variance used for testing, which has shape of (C)
grad_beta: the gradient of beta, which has shape of (C)

— grad_gamma: the gradient of gamma, which has shape of (C)

Applies a 2D(spatial) batchnormalization over input feature. The mean and standard-deviation are calculated
per-channel over mini-batch. This layer perform the algorithm:

Y — L@an(l’) X gamma + beta
var(z) + eps

The eps is a small value added to the denominator for numerical stability, which is set 1le~°

Parameters
— momentum (float): The momentum used for running-mean and running-val
Shape

— Input:(N,C,H;, ,Win)
— Output: (N,C,Hout,Wour)

Variables

beta: the learnable parameter has shape (C)

gamma: the learnable parameter has shape (C)
— r_mean: the mean value used for testing, which has shape of (C)
— r_var: the variance used for testing, which has shape of (C)

grad_beta: the gradient of beta, which has shape of (C)

grad_gamma: the gradient of gamma, which has shape of (C)

3 Model

The model to store the defined layer list and its parameter, connecting the layer and then performoing forward,
backward and parameter updating.

Input defined network layers and loss layers. Initilizing the model.

Parameters

— input_layers(list): the list of defined network structure
— loss_layers(layer): the loss layer to compute the loss

— optimizer(optimizer): the optimizer to update the parameter based on the computed gradient. You can
ignore this parameter for testing for not updating parameters.

— Ir_decay(lr_decay): Decaying the learning rate for each step. Setting to None means the constant learning
rate

Return

— None

Set the input channel (dimension) number for the network to initlize layer’s weight

Parameters
— dim(4nt): the dimension number of input data

Return None

Display the layer name and network structure

Parameters
— None
Return

— None

Do forward computation and compute the loss if the label is given

Parameters

— input(numpy array): the input data
— label(numpy array): the data label. If the label is None, it will only output the prediction.

Return

— loss, prediction (if the label is provided)
— prediction (if the label is None)

Do backward computation and compute the gradient

Parameters

— loss(float): the loss obtained through forward computation
Return

— None

Updating the model parameter based on the computed gradient. To update the parameter, you need to
initlize the model with optimizer.

Parameters
— None
Return

— None

Extract the output for specific layer.

Parameters
— layer_name(string): Denote the layer that the output will be extracted.
Return

— output(numpy array): The layer output

Extract the output gradient for a specific layer. You can use this function only when you use model.backward()
The gradient is the layer output gradient, i.e. the input gradient of its previous layer

Parameters
— layer_name(string): Denote the layer that the output gradient will be extracted.
Return

— output(numpy array): The layer output gradient

Changing the model mode, since the model tend to perform differently during training and testing. For
example, batchnorm layer. By default the model mode is training.

Parameters
— is_train(boolean): Indicate the current model mode, True for training, False for testing.
Return

— None

Saved current model layer, parameter and optimizer history if the optimizer if provided.

Parameters
— path(string): The saved model path

Return

— None

Restore the model from the saved model file

Parameters
— path(string): The saved model path
Return

— None

Initializing the model with the provided layer. You don’t need this method since it’s automatically used
within the method model.set_input_channel(dim)

Parameters
— None
Return

— None

4 Optimizer
The optimizer to update parameter

The optimizer performing Stochastic Gradient Descent algorithm to update the parameter

P = P —Ir_rate x (grad + P x weight_decay + momentum = grad_history)

Parameters

— Ir_rate(float): The learning rate of the optimizer
— weight_decay(float): The weight_decay rate of the optimizer

— momentum(float): The momentum rate of the optimizer

5 Learning Rate Decay
Decaying the learning rate for during training for certain condition.
[]
This performed exponentially learning rate decay.

step
new_Ir_rate = base_lr_rate X (basedecayster)

Parameters

— decay_step(int): period of learning rate decay
— base(float): The base to do exponential learning rate decay

— staircase(boolean): Whether to employ stairecase decaying strategy. If set to True, the learning rate will
decay only when decay step is reached. Otherwise, it will decay every step.

6 utils

The utils file stores two helper functions.

Upsample matrix into the output size.

Parameters

— input(4D ndarray): 4D matrix with shape (N, Cip, Hipn, Win)
— output_size(tuple): define the output size (Hout, Wout)-

Return

— output: same data type with input but has shape (N, Cin, Hout, Wout)

Convert the ground truth label into matrix format, same dimension as training data.

Parameters

— gt_label(2D ndarray): a 2D array with shape (batch_size, 10) stores five landmarks position information
for each instance. The 10 landmark coordinates should have the order (x1,x2,x3,x4,x5,y1,y2,y3,y4,y5)

— h(int): the height of image.
— w(int): the width of image.

Return

— label: a 4D matrix representing the converted ground truth data with shape (N, C, h, w)

