
PyNet API Documentations

Xiao Zhang, Haoyuan Zhang

November 28, 2017

1 Installation

Please go inside the PyNet folder directory and run the command in the terminal (either Windows or Linux) to
compile the C code.

python setup.py build ext - -inplace

Also, you need to install cython and pickle package in order to execute PyNet properly.

2 Layer

• class Linear(input channel, output channel, name=None, bias=False)

Applies a linear transformation to the incoming data: y = A× x + b

Parameters

– input channel(int): number of input channel

– output channel(int): numbers of channels produced by the linear layer

– name(string): the name of layer (default is None)

– bias: the label whether to introduce bias in this linear layer (default is True)

Shape

– Input: (N, inChannel) where N represents the batch size and inChannel is the number of input feature
dimension.

– Output: (N, outChannel) where N represents the batch size and outChannel is the number of output
feature dimension.

Variables

– w: the learnable weights has shape (inChannel × outChannel)

– b: the learnable bias has shape (outChannel)

– grad w: the gradient of weight, which has shape (inChannel × outChannel)

– grad b: the gradient with respect to bias, which has shape (outChannel)

• class Upsample(size=None, scale=None, name=None)

Upsample a given multi-channel spatial data, the algorithm is available for upsampling is nearest neighbor
and bilinear for 4D input data.

Parameters

– size(tuple, optional): a tuple of ints(Height out, Width out) output sizes

– scale(int/tuple of python:ints, optional): the multiplier for the image height / width

– name(string): the name of the Upsample layer

Shape

1

– Input: (N, C, Hin, Win) where C represents the channel number of input data

– Output: (N, C, Hout, Wout)

• class Relu(name=None)

Applies the rectified unit function element-wise ReLU(x) = max(0, x).

Parameters

– name(string): the name of the Relu layer

Shape

– Input: (N, *) where * means any number of additional dimensions

– Output: (N, *) same shape as the input data

• class Sigmoid(name=None)

Applies the element-wise function element-wise f(x) = 1/(1 + exp(−x)).

Parameters

– name(string): the name of the Sigmoid layer

Shape

– Input: (N, *) where * means any number of additional dimensions

– Output: (N, *) same shape as the input data

• class Flatten(name=None)

Flattens the input data while maintaining the batch size.

Parameters

– name(string): the name of the Flatten layer

Shape

– Input: (N, C, Hin, Win)

– Output: (N, C ×Hin ×Win)

• class Softmax (name=None)

Applies the Softmax function to an n-dimensional input data rescaling then so that the elements of the
n-dimensional output data lie in the range (0, 1) and sum to 1. The Softmax function is defined as

fi(x) = exp(xi)/
∑
j

exp(xj)

Parameters

– name(string): the name of the Softmax layer

Shape

– Input: (N, K) where N and K denotes the batch size and dimension of data respectively

– Output: (N, K) same shape as the input

2

• class L2 loss(average=True, name=None)

The criterion that measures the mean squared error between n elements in the input x and target y. The
function is defined as

l2 loss(x, y) = (1/n)×
∑
i

|xi − yi|2

x and y arbitrary shapes with a total of n elements each. The sum operation still operates over all elements,
and divides by n.

Parameters

– average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

– name(string): the name of the L2 loss layer

Shape

– Input x: (N, *) where * denotes any number of additional dimensions

– Target y: (N, *) same shape as x

• class Binary cross entropy loss(average=True, name=None)

The criterion that measures the Binary Cross Entropy between the target and the prediction. The function
is defined as

loss(p, t) = −(1/n)×
N∑
i=1

{t[i]× log(p[i]) + (1− t[i])× log(1− p[i])}

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target
t[i] should be numbers between 0 and 1.

Parameters

– average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

– name(string): the name of the Binary cross entropy loss layer

Shape

– Input p: (N, *) where * denotes any number of additional dimensions

– Target t: (N, *) same shape as p

– Output: scalar

• class Cross entropy loss(average=True, name=None)

This criterion measures the negative log likelihood loss in one single class. It is useful when training a
classification problem with C classes. The input is expected to contain scores for each class, which has to be
a 2D matrix of size (batch size, C).

This criterion expects a class index (0 to C-1) as the target for each value of a 1D matrix of size batch size.
The loss function is defined as

loss(p, t) = −(1/n)×
N∑
i=1

{log(p[i, t[i]])}

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target
t[i] should be numbers between 0 and 1.

Parameters

– average(bool, optional): by default, the losses are averaged over observations for each minibatch. How-
ever, if the average is set to False, the losses are instead summed for each minibatch.

3

– name(string): the name of the Binary cross entropy loss layer

Shape

– Input x: (N, *) where * denotes any number of additional dimensions

– Target y: (N, *) same shape as x

• class Conv2d(output channel, kernel size, padding = 0, stride = 1, name=None, bias=True)

Applies a 2D convolution over an input feature map. This layer is doing cross-correlation instead of convo-
lution. The equation to compute output shape should be

Sout =
Sin − 2 ∗ padding + kernel size

stride
+ 1

Where Sout, Sin represents the output size and input size respectively.

Parameters

– output channel(int): Number of channels produced by the convolution layer.

– kernel size (int or tuple): Size of convolution kernel

– padding (int or tuple): zero-padding added to both sides of the input

– stride (int or tuple): stride of convolution

– name (string): the name of layer

– bias (boolean): if True, adding learnable bias to the output

Shape

– Input: (N,Cin, Hin,Win)

– Output: (N,Cout, Hout,Wout)

Variables

– w: the learnable weight has shape (Cout, Cint, kernel size h, kernel size w)

– b: the learnable bias has shape (1, Cout, 1, 1)

– grad w: the gradient of weight, which has shape (Cout, Cint, kernel size h, kernel size w)

– grad b: the gradient with respect to bias, which has shape (1, Cout, 1, 1)

• class MaxPool2d(kernel size, padding = 0, stride = 1, name=None)

Applies a 2D Maxpooling over an input feature map. The equation to compute output shape should be

Sout =
Sin − 2 ∗ padding + kernel size

stride
+ 1

Where Sout, Sin represents the output size and input size respectively.

Parameters

– kernel size (int or tuple): Size of convolution kernel

– padding (int or tuple): zero-padding added to both sides of the input

– stride (int or tuple): stride of convolution

– name (string): the name of layer

Shape

– Input: (N,Cin, Hin,Win)

– Output: (N,Cout, Hout,Wout)

4

• class BatchNorm1D(momentum = 0.9, name=None)

Applies a 1D batchnormalization over input feature. The mean and standard-deviation are calculated per-
channel over mini-batch. This layer perform the algorithm:

Y =
x−mean(x)√
var(x) + eps

× gamma + beta

The eps is a small value added to the denominator for numerical stability, which is set 1e−5

Parameters

– momentum (float): The momentum used for running mean and running val

Shape

– Input: (N, C) where C represents the channel number

– Output: (N, C)

Variables

– beta: the learnable parameter has shape (C)

– gamma: the learnable parameter has shape (C)

– r mean: the mean value used for testing, which has shape of (C)

– r var: the variance used for testing, which has shape of (C)

– grad beta: the gradient of beta, which has shape of (C)

– grad gamma: the gradient of gamma, which has shape of (C)

• class BatchNorm2D(momentum = 0.9, name=None)

Applies a 2D(spatial) batchnormalization over input feature. The mean and standard-deviation are calculated
per-channel over mini-batch. This layer perform the algorithm:

Y =
x−mean(x)√
var(x) + eps

× gamma + beta

The eps is a small value added to the denominator for numerical stability, which is set 1e−5

Parameters

– momentum (float): The momentum used for running mean and running val

Shape

– Input:(N,C,Hin,Win)

– Output: (N,C,Hout,Wout)

Variables

– beta: the learnable parameter has shape (C)

– gamma: the learnable parameter has shape (C)

– r mean: the mean value used for testing, which has shape of (C)

– r var: the variance used for testing, which has shape of (C)

– grad beta: the gradient of beta, which has shape of (C)

– grad gamma: the gradient of gamma, which has shape of (C)

5

3 Model

The model to store the defined layer list and its parameter, connecting the layer and then performoing forward,
backward and parameter updating.

• method init (input layers, loss layer, optimizer = None, lr decay=None)

Input defined network layers and loss layers. Initilizing the model.

Parameters

– input layers(list): the list of defined network structure

– loss layers(layer): the loss layer to compute the loss

– optimizer(optimizer): the optimizer to update the parameter based on the computed gradient. You can
ignore this parameter for testing for not updating parameters.

– lr decay(lr decay): Decaying the learning rate for each step. Setting to None means the constant learning
rate

Return

– None

• method set input channel(dim)

Set the input channel (dimension) number for the network to initlize layer’s weight

Parameters

– dim(int): the dimension number of input data

Return None

• class show layer name()

Display the layer name and network structure

Parameters

– None

Return

– None

• class forward(input, label = None)

Do forward computation and compute the loss if the label is given

Parameters

– input(numpy array): the input data

– label(numpy array): the data label. If the label is None, it will only output the prediction.

Return

– loss, prediction (if the label is provided)

– prediction (if the label is None)

• method backward(loss)

Do backward computation and compute the gradient

Parameters

6

– loss(float): the loss obtained through forward computation

Return

– None

• method update param()

Updating the model parameter based on the computed gradient. To update the parameter, you need to
initlize the model with optimizer.

Parameters

– None

Return

– None

• method get layer output(layer name)

Extract the output for specific layer.

Parameters

– layer name(string): Denote the layer that the output will be extracted.

Return

– output(numpy array): The layer output

• method get layer grad(layer name)

Extract the output gradient for a specific layer. You can use this function only when you use model.backward()
The gradient is the layer output gradient, i.e. the input gradient of its previous layer

Parameters

– layer name(string): Denote the layer that the output gradient will be extracted.

Return

– output(numpy array): The layer output gradient

• method train(is train)

Changing the model mode, since the model tend to perform differently during training and testing. For
example, batchnorm layer. By default the model mode is training.

Parameters

– is train(boolean): Indicate the current model mode, True for training, False for testing.

Return

– None

• method save model(path)

Saved current model layer, parameter and optimizer history if the optimizer if provided.

Parameters

– path(string): The saved model path

Return

7

– None

• method load model(path)

Restore the model from the saved model file

Parameters

– path(string): The saved model path

Return

– None

• method layer init()

Initializing the model with the provided layer. You don’t need this method since it’s automatically used
within the method model.set input channel(dim)

Parameters

– None

Return

– None

4 Optimizer

The optimizer to update parameter

• class SGD Optimizer(lr rate, weight decay, momentum = 0.99)

The optimizer performing Stochastic Gradient Descent algorithm to update the parameter

P = P − lr rate× (grad + P ∗ weight decay + momentum ∗ grad history)

Parameters

– lr rate(float): The learning rate of the optimizer

– weight decay(float): The weight decay rate of the optimizer

– momentum(float): The momentum rate of the optimizer

5 Learning Rate Decay

Decaying the learning rate for during training for certain condition.

• class Decay learning rate(decay step = 500, base = 0.96, stairecase = True)

This performed exponentially learning rate decay.

new lr rate = base lr rate× (base
step

decay step)

Parameters

– decay step(int): period of learning rate decay

– base(float): The base to do exponential learning rate decay

– staircase(boolean): Whether to employ stairecase decaying strategy. If set to True, the learning rate will
decay only when decay step is reached. Otherwise, it will decay every step.

8

6 utils

The utils file stores two helper functions.

• method upsample2d(input, output size)

Upsample matrix into the output size.

Parameters

– input(4D ndarray): 4D matrix with shape (N, Cin, Hin, Win)

– output size(tuple): define the output size (Hout, Wout).

Return

– output : same data type with input but has shape (N, Cin, Hout, Wout)

• method get gt map(get label, h, w)

Convert the ground truth label into matrix format, same dimension as training data.

Parameters

– gt label(2D ndarray): a 2D array with shape (batch size, 10) stores five landmarks position information
for each instance. The 10 landmark coordinates should have the order (x1,x2,x3,x4,x5,y1,y2,y3,y4,y5)

– h(int): the height of image.

– w(int): the width of image.

Return

– label : a 4D matrix representing the converted ground truth data with shape (N, C, h, w)

9

