
CIS581: Computer Vision and Computational Photography
Project 4, Part B: Convolutional Neural Networks (CNNs)

Due: Dec.11, 2017 at 11:59 pm

Instructions
• CNNs is a team project. The maximum size of a team is three students. The same team will carry forward for

the Part C as well. You are not permitted to do this individually. A team is not allowed to collaborate with another
team. Only one individual from each team must submit the code for this part.
Maximum late days allowed for this part of the project is the average of the late days of the two or three students in
the team. The late days used will be subtracted from the individual tally of late days for each student.

• You must make one submission named <Group_Number>_Project4B.zip on Canvas. We recommend that
you include a README.txt file in your submissions to help us execute your code correctly. The zip file should also
contain a report with a .pdf extension and 3 folders containing the Python code for each part. Note that you should
include all the figures in your report.

• To help you implement the project efficiently, we provide you a documentation of the PyNet API, the package that
will be used throughout the whole project. Please read it carefully prior to starting your implementation.

• This handout provides instructions for the code in Python. You are not permitted to use MATLAB for this project.

• Feel free to create your own functions as and when needed to modularize the code. For Python, add all functions in
a helper.py file and import the file in all the required scripts.

• The Third Problem(Face Landmarks Detection) is optional for extra credits, but truly recommend to give a shot
for that since it’s related to the Part C.

• Start early! If you get stuck, please post your questions on Piazza or come to Office Hours!

• Please follow the submission guidelines and the conventions strictly! The grading scripts will break if the
guidelines aren’t followed.

1 Functional Layers Implementation
In this part, you should complete four functional layers in the file myLayers.py, two non-linear activations (Sigmoid and
Relu) and two loss functions (l2_loss and Cross_entropy_loss).
Note: Put all the helper functions (e.g. gradient computation) in the file p1_utils.py and other functions such as for 3D
visualization methods should be in the file p1_main.py.

As shown in Figure 1, you should implement a single neuron with an input array of size 1× 1 and value 1. You should
then use different activation and loss function combinations to achieve the following tasks:

http://canvas.upenn.edu/courses/1377218
http://piazza.com/upenn/fall2017/cis581


Figure 1: Network diagram for part 1

1. Complete the Sigmoid and Relu layers. Plot two 3D figures showing the relationship of the Sigmoid and Relu
output with respect to the weight and bias. To be specific, x-axis is the weight (W), y-axis is the bias (b), and z-axis
is the output of the function.
Tips: Use the package matplotlib and the function plot_surface from mpl_toolkits.mplot3d to draw 3D figures.

2. Complete the l2_loss layer. Take the ground truth y equal to 0.5 (same type as the input x) and experiment with the
forward and backward passes. Use the Sigmoid and Relu as activation neurons respectively.

(a) Plot 3D figures showing the relationship of the l2 loss with the weight and bias. To be specific, x-axis is
weight, y-axis is bias, and z-axis is the loss output.

(b) Compute the backward gradient of the l2 loss with respect to the weight, ∂ l2_loss
∂weight , and plot 3D figures showing

the relationship of gradient with the weight and bias. To be specific, x-axis is the weight, y-axis is the bias,
and z-axis is the gradient output.

3. Complete the Cross_entropy_loss layer. Take the ground truth y equal to 0.5 and experiment with the forward and
backward passes. Use the Sigmoid and Relu as activation neurons respectively.

(a) Plot 3D figures showing the relationship of the cross-entropy loss with the weight and bias. To be specific,
x-axis is the weight, y-axis is the bias, and z-axis is the loss output.

(b) Compute the backward gradient of Cross-entropy loss with respect to the weight, ∂CE_loss
∂weight , and plot 3D figures

showing the relationship of the gradient with the weight and bias. To be specific, x-axis is the weight, y-axis
is the bias, and z-axis is the gradient output.

4. Explain what you observed from the above plots. The explanations should include:

(a) What are the differences between cross-entropy loss and L2 loss?

(b) What are the differences between the gradients from cross-entropy loss and the l2 loss? Provide mathematical
reasoning for the differences.

(c) Predict how these differences will influence the efficiency of the learning and training process.

2 Simple Network Implementation
In this part, you will extend the theoretical analysis in the first part to perform quick experiments on a real dataset for the
task of recognition. On the basis of the PyNet structure, complete the file p2_train.py, put all help functions (e.g.data
loader) in the file p2_utils.py.
Note: if you have confidence in the layers you implemented in the part 1, feel free to make fully usage of them in the
following questions.

2.1 Experiment with Fully Connected Network
Implement the network architecture in the Figure 2, by doing the experiment, you will experience how different activation
and loss functions influence the learning (or convergence) of a simple neural network.



Figure 2: Network diagram for part 2.1

The input data is a random toy dataset containing 64 images, each of which is of resolution 4× 4. The ground truth
label is either 0 or 1. The data is stored as ’p21_random_imgs.npy’ and ’p21_random_labs.npy’, the latter one represents
the ground truth. For all training process, use simple Gradient Descent method with learning rate 0.1, weight decay 5e−4

and momentum 0.99. Batch size in each training set is 64.

Note: The nonlinear activation in the last neuron should use the Sigmoid layer, the max number of training epochs(iterations)
is 1000.

1. Use Sigmoid function as neuron activation between two Fully Connected Layers, and l2_loss for the network. Plot
two figures showing, (1) loss vs training iterations, (2) accuracy vs training iterations. Stop the training when
accuracy reaches 100%.

2. Use Sigmoid function as neuron activation between two Fully Connected Layers, and Cross_entropy_loss for the
network. Plot two figures showing, (1) loss vs training iterations, (2) accuracy vs training iterations. Stop the
training when accuracy reaches 100%.

3. Use Relu function as neuron activation between two Fully Connected Layers, and l2_loss for the network. Plot two
figures showing, (1) loss vs training iterations, (2) accuracy vs training iterations. Stop the training when accuracy
reaches 100%.

4. Use Relu function as neuron activation between two Fully Connected Layers, and Cross_entropy_loss for the
network. Plot two figures showing, (1) loss vs training iterations, (2) accuracy vs training iterations. Stop the
training when accuracy reaches 100%.

5. Sort the settings (activation and loss function combination) according to the training iterations to reach 100%
accuracy. Explain the reasons of different convergence rates.

2.2 Experiment with Convolutional Network
Implement the network architecture in the Figure 3, by doing the experiment, you will experience how the convolutional
networks learn to interpret images and capture meaningful structure.

Figure 3: Network diagram for part 2.2

The Hyper-parameters of two Convolutional layers shown in the below table.



Layers Hyper-parameters
Convolution 1 Kernel size = (7, 7), output channel = 16, stride = (1, 1), padding = 0, followed by ReLU.
Convolution 2 Kernel size = (7, 7), output channel = 8, stride = (1, 1), padding = 0, followed by ReLU.

The input data is a line dataset (samples in Figure 4) contains 64 images, each of which is of resolution 16× 16. The
ground truth label is either 0 or 1. The data for this part is stored as ’p22_line_imgs.npy’ and ’p22_line_labs.npy’, the
latter one represents the ground truth. For all training process, use simple Gradient Descent method with learning rate
0.01, weight decay 5e−4 and momentum 0.99. Batch size in each training set 64.

Note: The activation in the last neuron should use the Sigmoid layer, the loss function is the Binary_cross_entropy_loss,
and the max number of training epochs(iterations) is 1000.

Plot two figures showing, (1) loss vs training iterations, (2) accuracy vs training iterations. Stop the training when
accuracy reaches 100%.

Figure 4: Four samples in the line dataset. The left column corresponds to the label 0, as the right column 1.

3 Face Landmarks Detection (Extra Credits)
In this section, you play around with a deep neural network to experiment with various images of faces. After training,
the network should be able to detect a total of five landmarks in the face, namely left eye, right eye, nose, left and right
side of mouth.
Complete the file ’p3_train.py’ and ’p3_dataloader.py’. Also include all related helper functions in the file p3_utils.py.

Construct the network following the below architecture (Figure 5).

Figure 5: Network diagram for part 3

The below table shows detailed hyper-parameters of the layers in deep neural network.



Layers Hyper-parameters
Convolution 1 Kernel size = (5, 5, 64), stride = (1, 1), padding = 2, followed by Batch normalization and ReLU.
Convolution 2 Kernel size = (5, 5, 64), stride = (1, 1), padding = 2, followed by Batch normalization and ReLU.
Pooling 1 Max operation. Kernel size = (2, 2), stride = (2, 2), padding = 0.
Convolution 3 Kernel size = (5, 5, 128), stride = (1, 1), padding = 2, followed by Batch normalization and ReLU.
Convolution 4 Kernel size = (5, 5, 128), stride = (1, 1), padding = 2, followed by Batch normalization and ReLU.
Pooling 2 Max operation. Kernel size = (2, 2), stride = (2, 2), padding = 0.
Convolution 4 Kernel size = (3, 3, 384), stride = (1, 1), padding = 1, followed by Batch normalization and ReLU.
Convolution 5 Kernel size = (3, 3, 384), stride = (1, 1), padding = 1, followed by Batch normalization and ReLU.
Convolution 6 Kernel size = (3, 3, 5), stride = (1, 1), padding = 1, followed by Batch normalization and Sigmoid.

Note: Please follow below tips to help your implementations.

• Download data via this link: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip

• Choose the Binary_cross_entropy_loss for the loss computation.

• Use the Stochastic Gradient Descent(SGD) optimizer for training, with learning rate 1e−4, weight decay 5e−4 and
momentum 0.99.

• Set the batch size of each step is 1, around 45,000 steps in each epoch should be reasonable to get good results.

• Remember to normalize the raw input image via the following operations.

Channelblue = (Channelblue −119.78)/255

Channelgreen = (Channelgreen −99.50)/255

Channelred = (Channelred −89.93)/255

• Use the function get_gt_map() to pre-process ground truth label. In addition, since images have different size, use
the function upsample2d() to make the input image and converted ground truth label into the same size (40×40 is
recommended) for training.

• Train for 4 or 5 epochs should be enough.

Utilize the above instructions and complete total four tasks in this part.

1. Plot the figure showing loss vs training iterations.

2. Plot the figure showing accuracy vs training iterations.

3. Show at least two sets of feature maps after Upsample layer showing the prediction results of your network (See a
sample plot in Figure 6).

4. Report the average test loss and accuracy based on your trained network.



(a) Raw input face (b) Right eye detection result (c) Left eye detection result

(d) Nose detection result (e) Right side month detection result (f) Left side month detection result

Figure 6: Sample face landmarks detection result (The bright mark represents the detection result)
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